The Most Important Herbs Used in the Treatment of Sexually Transmitted Infections in Traditional Medicine

Authors

  • Mohammadreza Nazer MPH, Associate Professor, Department of Infectious Diseases, Lorestan University of Medical Sciences, Khorramabad, Iran
  • Saber Abbaszadeh Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
  • Mohammd Darvishi Associate Professor of Infectious Diseases, Infectious Research Center (IDTMRC), Department of Aerospace and Subaquatic Medicine, AJA University of Medical Sciences, Tehran, Iran
  • Abdolreza Kheirollahi Urology Specialist, Lorestan University of Medical Sciences, Khorramabad, Iran
  • Somayeh Shahsavari Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
  • Mona Moghadasi Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran

DOI:

https://doi.org/10.18502/sjms.v14i2.4691

Abstract

Sexually transmitted diseases (STDs) or venereal diseases are transmitted through various methods of sexual intercourse (oral, vaginal, and anal). The predisposition to contract these types of diseases and infections depends on the immunity system of the body, so the lower the immunity system’s strength, the greater the risk of sexually transmitted infections (STIs). The most important pathogenic causes of STIs include bacteria, viruses, and parasites. Phytochemical investigations have shown that medicinal plants are a rich source of antioxidant compounds, biologically active compounds, phenols, etc. They can have an inhibitory effect on germs and infectious viruses and are very important for a variety of parasitic diseases, microbial infections, and STIs. Some of the most important medicinal plants that produce inhibitory effects on the growth and proliferation of pathogenic agents of the STIs were reported in the present article. A number of plants have been reported to be used in the treatment and prevention of genital tract diseases and STIs, and to produce antiviral and antimicrobial effects, including Taxillus, Aristolochia, Syzygium cumini, Albizia adianthifolia, Bidens pilosa, Carica papaya, Ranunculus, Peltophorum africanum, Vachellia karroo, Rhoicissus tridentate, Houttuynia cordata, Panax notoginseng, Nelumbo nucifera, Astragalus, Hypericum aethiopicum, Spondias mombin, Jatropha zeyheri, Ximenia caffra, Trichilia dregeana, Clematis brachiate, Tabernaemontana, Sarcophyton. Phytochemical investigations have examined the therapeutic and clinical effects of medicinal plants, and the use of their active ingredients to produce herbal drugs has been addressed. The results of phytochemical investigations have shown that the most important compounds of these plants include quercetin, isoquercitrin, Dammarane-type saponin, flavonoids, alkaloids, flavonoids, glycosides, terpenoids, steroids, astragalosides, flavonoids and polysaccharides, α-pinene, β-pinene, α-pinene, quercetin, myricetin and luteolin flavonoids, β-pinene, 1,3,8-p-menthatriene, ledene, m-menthane, linalyl acetate and 3-carene. β-sitosterol, lupeol, lupeol, sitosterol, spathulenol, β-sitostenone,

References

Wardlaw, A. M. and Agrawal, A. F. (2018). Sexual conflict and sexually transmitted infections (STIs): coevolution of sexually antagonistic host traits with an STI. The American Naturalist, vol. 193, no. 1, p. E000. DOI: https://doi.org/10.1086/700564

Wardlaw, A. M. and Agrawal, A. F. (2018). Sexual conflict and STIs: coevolution of sexually antagonistic host traits with a sexually transmitted infection. bioRxiv 203695 DOI: https://doi.org/10.1101/203695

Weinstock, H., Berman, S., and Cates, Jr., W. (2004). Sexually transmitted diseases among American youth: incidence and prevalence estimates, 2000. Perspectives on Sexual and Reproductive Health, vol. 36, no. 1, pp. .10–6 DOI: https://doi.org/10.1363/3600604

Hurst, G. D. D., Sharpe, R. G., Broomfield, A. H., et al. (1995). Sexually transmitted disease in a promiscuous insect, Adalia bipunctata. Ecological Entomology, vol. 20, no. 3, pp. .236–230 DOI: https://doi.org/10.1111/j.1365-2311.1995.tb00452.x

Fenton, K. A. and Lowndes, C. M. (2004). Recent trends in the epidemiology of sexually transmitted infections in the European Union. Sexually Transmitted Infections, vol. 80, no. 4, pp. .263–255 DOI: https://doi.org/10.1136/sti.2004.009415

Gerbase, A. C., Rowley, J. T., and Mertens, T. E. (1998). Global epidemiology of sexually transmitted diseases. The Lancet, vol. 351, pp. S2–S4. DOI: https://doi.org/10.1016/S0140-6736(98)90001-0

May, R. M. and Anderson, R. M. (1979). Population biology of infectious diseases: Part II. Nature, vol. 280, no. 5722, p. .455 DOI: https://doi.org/10.1038/280455a0

Hunt, C. W. (1989). Migrant labor and sexually transmitted disease: AIDS in Africa. Journal of Health and Social Behavior, vol. 30, no. 4, pp. .373–353 DOI: https://doi.org/10.2307/2136985

Levine, G. I. (1991). Sexually transmitted parasitic diseases. Primary Care, vol. 18, no. 1, pp. .128–101 DOI: https://doi.org/10.1016/S0095-4543(21)00918-0

Santana, N., Santos, T., Sato, A., et al. (2018). Vertical transmission of human papillomavirus in pregnancy: a systematic review and meta-analysis. International Journal of Infectious Diseases, vol. 73, pp. .335–334 DOI: https://doi.org/10.1016/j.ijid.2018.04.4173

Peder, L., Nascimento, B., Plewka, J., et al. (2018). Prevalence and predictors associated with sexually transmitted infections in patients in Southern Brazil. International Journal of Infectious Diseases, vol. 73, p. .335 DOI: https://doi.org/10.1016/j.ijid.2018.04.4175

Giesecke, J. (2017). Modern Infectious Disease Epidemiology. Boca Raton, FL: CRC Press.

Geremew, R. A., Agizie, B. M., and Bashaw, A. A., et al. (2017). Prevalence of selected sexually transmitted infection (STI) and associated factors among symptomatic patients attending Gondar Town hospitals and health centers. Ethiopian Journal of Health Sciences, vol. 27, no. 6, pp. .600–589 DOI: https://doi.org/10.4314/ejhs.v27i6.4

Berec, L., Janoušková, E., and Theuer, M. (2017). Sexually transmitted infections and mate-finding Allee effects. Theoretical Population Biology, vol. 114, pp. .69–59 DOI: https://doi.org/10.1016/j.tpb.2016.12.004

Morris, M. C., Rogers, P. A., and Kinghorn, G. R. (2001). Is bacterial vaginosis a sexually transmitted infection? Sexually Transmitted Infections, vol. 77, no. 1, pp. .68–63 DOI: https://doi.org/10.1136/sti.77.1.63

Allsworth, J. E., Lewis, V. A., and Peipert, J. F. (2008). Viral sexually transmitted infections and bacterial vaginosis: 2001–2004 National Health and Nutrition Examination Survey data. Sexually Transmitted Diseases, vol. 35, no. 9, pp. 791– .796 DOI: https://doi.org/10.1097/OLQ.0b013e3181788301

Fenton, K. A., Korovessis, C., Johnson, A. M., et al. (2001). Sexual behaviour in Britain: reported sexually transmitted infections and prevalent genital Chlamydia trachomatis infection. The Lancet, vol. 358, no. 9296, pp. .1854–1851 DOI: https://doi.org/10.1016/S0140-6736(01)06886-6

Thompson, S. E. and Washington, A. E. (1983). Epidemiology of sexually transmitted Chlamydia trachomatis infections. Epidemiologic Reviews, vol. 5, p. .96 DOI: https://doi.org/10.1093/oxfordjournals.epirev.a036266

Wasserheit, J. N. (1992). Epidemiological synergy. Interrelationships between human immunodeficiency virus infection and other sexually transmitted diseases. Sexually Transmitted Diseases, vol. 19, no. 2, pp. .77–61 DOI: https://doi.org/10.1097/00007435-199219020-00001

Simonsen, J. N., Cameron, W., Gakinya, M. N., et al. (1988). Human immunodeficiency virus infection among men with sexually transmitted diseases. New England Journal of Medicine, vol. 319, no. 5, pp. .278–274 DOI: https://doi.org/10.1056/NEJM198808043190504

Desclaux, A., de Lamballerie, X., Leparc-Goffart, I., et al. (2018). Probable sexually transmitted zika virus infection in a pregnant woman. New England Journal of Medicine, vol. 378, no. 15, pp. .1460–1458 DOI: https://doi.org/10.1056/NEJMc1710453

Kojima, N. and Klausner, J. D. (2018). Improving management of sexually transmitted infections in those who use pre-exposure prophylaxis for human immunodeficiency virus infection. Aids, vol. 32, no. 2, pp. .275–272 DOI: https://doi.org/10.1097/QAD.0000000000001703

Okumura, C. Y., Baum, L. G., and Johnson, P. J. (2008). Galectin−1 on cervical epithelial cells is a receptor for the sexually transmitted human parasite Trichomonas vaginalis. Cellular Microbiology, vol. 10, no. 10, pp. .2090–2078 DOI: https://doi.org/10.1111/j.1462-5822.2008.01190.x

Håkansson, C., Thorén, K., Norkrans, G., et al. (1984). Intestinal parasitic infection and other sexually transmitted diseases in asymptomatic homosexual men. Scandinavian Journal of Infectious Diseases, vol. 16, no. 2, pp. .202–199 DOI: https://doi.org/10.3109/00365548409087142

Conrad, M., Zubacova, Z., Dunn, L. A., et al. (2011). Microsatellite polymorphism in the sexually transmitted human pathogen Trichomonas vaginalis indicates a genetically diverse parasite. Molecular and Biochemical Parasitology, vol. 175, no. 1, pp. .38–30 DOI: https://doi.org/10.1016/j.molbiopara.2010.08.006

Carlton, J. M., Hirt, R. P., Silva, J. C., et al. (2007). Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science, vol. 315, no. 5809, pp. .212–207 DOI: https://doi.org/10.1126/science.1132894

World Health Organization. (2011). Prevalence and incidence of selected sexually transmitted infections, Chlamydia trachomatis, Neisseria gonorrhoeae, syphilis and Trichomonas vaginalis: methods and results used by WHO to generate 2005 estimates. Geneva: World Health Organization.

Van Der Pol, B. (2007). Trichomonas vaginalis infection: the most prevalent nonviral sexually transmitted infection receives the least public health attention. Clinical Infectious Diseases, vol. 44, no. 1, pp. .25–23 DOI: https://doi.org/10.1086/509934

Stemmer, S. M., Mordechai, E., Adelson, M. E., et al. (2018). Trichomonas vaginalis is most frequently detected in women at the age of peri-/premenopause: an unusual pattern for a sexually transmitted pathogen. American Journal of Obstetrics and Gynecology, vol. 218, no. 3, pp. 328.e1–328, e13. DOI: https://doi.org/10.1016/j.ajog.2017.12.006

Wang, C. C., McClelland, R. S., Reilly, M., et al. (2001). The effect of treatment of vaginal infections on shedding of human immunodeficiency virus type 1. The Journal of Infectious Diseases, vol. 183, no. 7, pp. .1022–1017 DOI: https://doi.org/10.1086/319287

Sobel, J. D. (1990). Vaginal infections in adult women. Medical Clinics of North America, vol. 74, no. 6, pp. .1602–1573 DOI: https://doi.org/10.1016/S0025-7125(16)30496-5

Abdelaziz, Z. A., Ibrahim, M. E., Bilal, N. E., et al. (2014). Vaginal infections among pregnant women at Omdurman Maternity Hospital in Khartoum, Sudan. The Journal of Infection in Developing Countries, vol. 8, no. 4, pp. .497–490 DOI: https://doi.org/10.3855/jidc.3197

Balkus, J. E., Manhart, L. E., Lee, J., et al. (2016). Periodic presumptive treatment for vaginal infections

may reduce the incidence of sexually transmitted bacterial infections. The Journal of Infectious Diseases, vol. 213, no. 12, pp. .1937–1932

Alcaide, M. L., Strbo, N., Romero, L., et al. (2016). Bacterial vaginosis is associated with loss of gamma delta T cells in the female reproductive tract in women in the Miami Women Interagency HIV Study (WIHS): A cross sectional study. PLOS ONE, vol. 11, no. 4, pp. e0153045. DOI: https://doi.org/10.1371/journal.pone.0153045

Chen, C., Song, X., Wei, W., et al. (2017). The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. Nature Communications, vol. 8, no. 1, p. .875 DOI: https://doi.org/10.1038/s41467-017-00901-0

Fridkin, S. K. and Jarvis, W. R. (1996). Epidemiology of nosocomial fungal infections. Clinical Microbiology Reviews, vol. 9, no. 4, pp. .511–499 DOI: https://doi.org/10.1128/CMR.9.4.499

De Bernardis, F., Liu, H., O’Mahony, R., et al. (2007). Human domain antibodies against virulence traits of Candida albicans inhibit fungus adherence to vaginal epithelium and protect against experimental vaginal candidiasis. The Journal of Infectious Diseases, vol. 195, no. 1, pp. .157–149 DOI: https://doi.org/10.1086/509891

Badiee, P., Kordbacheh, P., Alborzi, A., et al. (2005). Fungal infections in solid organ recipients. Experimental and Clinical Transplantation, vol. 3, no. 2, pp. .389–385

Witkin, S. S. (2015). The vaginal microbiome, vaginal anti−microbial defence mechanisms and the clinical challenge of reducing infection−related preterm birth. BJOG: An International Journal of Obstetrics & Gynaecology, vol. 122, no. 2, pp. .218–213 DOI: https://doi.org/10.1111/1471-0528.13115

Passmore, J.-A. S. and Jaspan, H. B. (2018). Vaginal microbes, inflammation, and HIV risk in African women. The Lancet Infectious Diseases, vol. 18, no. 5, pp. .484–483 DOI: https://doi.org/10.1016/S1473-3099(18)30061-6

Donati, L., Di Vico, A., Nucci, M., et al. (2010). Vaginal microbial flora and outcome of pregnancy. Archives of Gynecology and Obstetrics, vol. 281, no. 4, pp. .600–589 DOI: https://doi.org/10.1007/s00404-009-1318-3

Azu, M. N., Richter, S., and Aniteye, P. (2018). Ghanaian men living with sexual transmitted infections: knowledge and impact on treatment seeking behaviour-a qualitative study. African Journal of Reproductive Health, vol. 22, no. 3, pp. .32–24

Desmennu, A. T., Titiloye, M. A., and Owoaje, E. T. (2018). Behavioural risk factors for sexually transmitted infections and health seeking behaviour of street youths in Ibadan, Nigeria. African Health Sciences, vol. 18, no. 1, pp. .187–180 DOI: https://doi.org/10.4314/ahs.v18i1.23

Mulaudzi, R. B., Ndhlala, A. R., and Van Staden, J. (2015). Ethnopharmacological evaluation of a traditional herbal remedy used to treat gonorrhoea in Limpopo province, South Africa. South African Journal of Botany, vol. 97, pp. .122–117 DOI: https://doi.org/10.1016/j.sajb.2014.12.007

Ozen, B. and Baser, M. (2017). Vaginal candidiasis infection treated using apple cider vinegar: a case report. Alternative Therapies in Health & Medicine, vol. 23, no. .7

Hayajneh, F. M. F., Jalal, M., Zakaria, H., et al. (2018). Anticoccidial effect of apple cider vinegar on broiler chicken: an organic treatment to measure anti-oxidant effect. Polish Journal of Veterinary Sciences, vol. 21, no. 2, pp. .369–361 DOI: https://doi.org/10.24425/122605

Khezri, S. S., Saidpour, A., Hosseinzadeh, N., et al. (2018). Beneficial effects of apple cider vinegar on weight management, Visceral Adiposity Index and lipid profile in overweight or obese subjects receiving restricted calorie diet: a randomized clinical trial. Journal of Functional Foods, vol. 43, pp. .102–95 DOI: https://doi.org/10.1016/j.jff.2018.02.003

Press, S. (2015). Do-it-yourself herbal medicine: home-crafted remedies for health and beauty. Berkeley, CA: Arcas Publishing.

Luqman, S., Dwivedi, G. R., Darokar, M. P., et al. (2007). Potential of rosemary oil to be used in drug-resistant infections. Alternative Therapies in Health & Medicine, vol. 13, no. 5, pp. .59–54

Jiang, Y., Wu, N., Fu, Y. J., et al. (2011). Chemical composition and antimicrobial activity of the essential oil of rosemary. Environmental Toxicology and Pharmacology, vol. 32, no. 1, pp. .68–63 DOI: https://doi.org/10.1016/j.etap.2011.03.011

Issabeagloo, E., Kermanizadeh, P., Taghizadieh, M., et al. (2012). Antimicrobial effects of rosemary (Rosmarinus officinalis L.) essential oils against Staphylococcus spp. African Journal of Microbiology Research, vol. 6, no. 23, pp. .5042–5039 DOI: https://doi.org/10.5897/AJMR12.741

Ojeda-Sana, A. M., van Barenb, C. M., Elechosa, M. A., et al. (2013). New insights into antibacterial and antioxidant activities of rosemary essential oils and their main components. Food Control, vol. 31, no. 1, pp. .195–189 DOI: https://doi.org/10.1016/j.foodcont.2012.09.022

Mohsenipour, Z. and Hassanshahian, M. (2015). The effects of Allium sativum extracts on biofilm formation and activities of six pathogenic bacteria. Jundishapur Journal of Microbiology, vol. 8, no. 8, e18971. DOI: https://doi.org/10.5812/jjm.18971v2

Mahady, G. B. (2005). Medicinal plants for the prevention and treatment of bacterial infections. Current Pharmaceutical Design, vol. 11, no. 19, pp. .2427–2405 DOI: https://doi.org/10.2174/1381612054367481

Goncagul, G. and Ayaz, E. (2010). Antimicrobial effect of garlic (Allium sativum). Recent Patents on Anti-infective Drug Discovery, vol. 5, no. 1, pp. .93–91 DOI: https://doi.org/10.2174/157489110790112536

Oloke, J., Odelade, K., and Oladeji, O. (2017). Characterization and antimicrobial analysis of flavonoids in vernonia amygdalina: a common chewing stick in southwestern Nigeria. Bulletin of Pharmaceutical Research, vol. 7, no. 3, p. .149 DOI: https://doi.org/10.21276/bpr.2017.7.3.2

Markum, E. and Baillie, J. (2012). Combination of essential oil of Melaleuca alternifolia and iodine in the treatment of molluscum contagiosum in children. Journal of Drugs in Dermatology, vol. 11, no. 3, pp. .354–349

Fouladvand, M., Khorami, S., Naeimi, B., et al. (2016). Evaluation of in vitro leishmanicidal activity of tea tree oil (Melaleuca alternifolia). Tibb-i junūb, vol. 18, no. 6, pp. .1269–1262

Sinha, D. J., Vasudeva, A., Gowhar, O., et al. (2015). Comparison of antimicrobial efficacy of propolis, Azadirachta indica (Neem), Melaleuca alternifolia (Tea tree oil), Curcuma longa (Turmeric) and 5% sodium hypochlorite on Candida albicans biofilm formed on tooth substrate: an in-vitro study. Journal of Pharmaceutical and Biomedical Sciences, vol. 5, no. 6, pp. .474–469

Eldin, H. M. E. and Badawy, A. F. (2015). In vitro anti-Trichomonas vaginalis activity of Pistacia lentiscus mastic and Ocimum basilicum essential oil. Journal of Parasitic Diseases, vol. 39, no. 3, pp. .473–465 DOI: https://doi.org/10.1007/s12639-013-0374-6

Loughrin, J. H. and Kasperbauer, M. J. (2001). Light reflected from colored mulches affects aroma and phenol content of sweet basil (Ocimum basilicum L.) leaves. Journal of Agricultural and Food Chemistry, vol. 49, no. 3, pp. .1335–1331 DOI: https://doi.org/10.1021/jf0012648

Kayode, J. and Kayode, G. M. (2008). Ethnomedicinal survey of botanicals used in treating sexually transmitted diseases in Ekiti State, Nigeria. Ethnobotanical Leaflets, vol. 2008, no. 1, p. .7

Zandi, K., Zadeh, M. A., Sartavi, K., et al. (2007). Antiviral activity of aloe Vera against herpes simplex virus type 2: an in vitro study. African Journal of Biotechnology, vol. 6, no. .15 DOI: https://doi.org/10.5897/AJB2007.000-2276

Talwar, G. P. (2018). Development of a unique polyherbal formulation BASANT endowed with wide spectrum action on sexually transmitted infections and capability of restoring healthy vagina. SciFed Journal of Herbal Medicine, vol. 2, no. .1

Haroon, S. M., Shahid, S., Ammar Hussain, S., et al. (2018). Comparative Study of Antioxidant Activity of Flower of Aloe vera and Leaf Extract of Aloe ferox. Journal of Basic and Applied Sciences, vol. 14, pp. .196–191 DOI: https://doi.org/10.6000/1927-5129.2018.14.29

Sushen, U., Unnithan, C. R., Rajan, S., et al. (2017). Aloe vera: a potential herb used as traditional medicine by tribal people of Kondagatu and Purudu of Karimnagar District, Telangana state, India. and their preparative methods. European Journal of Pharmaceutical and Medical Research, vol. 4, no. 7, pp. .831–820

Mgbeje, B. I. O., Asenye, E. M., Iwara, I. A., et al. (2016). Antihyperglycemic and antihyperlipidemic properties of n-hexane fraction of Heinsia crinita crude leaf extracts. World Journal of Pharmacy and Pharmaceutical Sciences, vol. 5, no. 10, pp. .197–185

Rezaie, P., Mazidi, M., and Nematy, M. (2015). Ghrelin, food intake, and botanical extracts: a review. Avicenna Journal of Phytomedicine, vol. 5, no. 4, p. .271

Dinda, B., Kyriakopoulos, A. M., Dinda, S., et al. (2016). Cornus mas L.(cornelian cherry), an important European and Asian traditional food and medicine: ethnomedicine, phytochemistry and pharmacology for its commercial utilization in drug industry. Journal of Ethnopharmacology, vol. 193, pp. .690–670 DOI: https://doi.org/10.1016/j.jep.2016.09.042

Moldovan, B., Filip, A., Clichici, S., et al. (2016). Antioxidant activity of Cornelian cherry (Cornus mas L.) fruits extract and the in vivo evaluation of its anti-inflammatory effects. Journal of Functional Foods, vol. 26, pp. 77–87. DOI: https://doi.org/10.1016/j.jff.2016.07.004

Webberley, K. M. and Hurst, G. D. (2002). The effect of aggregative overwintering on an insect sexually transmitted parasite system. Journal of Parasitology, vol. 88, no. 4, pp. .712–707 DOI: https://doi.org/10.1645/0022-3395(2002)088[0707:TEOAOO]2.0.CO;2

Ayehunie, S., Wang, Y.-Y., Landry, T., et al. (2018). Hyperosmolal vaginal lubricants markedly reduce epithelial barrier properties in a three-dimensional vaginal epithelium model. Toxicology Reports, vol. 5, pp. .140–134 DOI: https://doi.org/10.1016/j.toxrep.2017.12.011

Deryabin, D. G. and Tolmacheva, A. A. (2015). Antibacterial and anti-quorum sensing molecular composition derived from quercus cortex (oak bark) extract. Molecules, vol. 20, no. 9, pp. .17108–17093 DOI: https://doi.org/10.3390/molecules200917093

Chahardooli, M. and Khodadadi, E. (2014). The biosynthesis of silver nanoparticles using OAK fruit extract and the investigation of their anti-microbial activities against nosocomial infection agents. Scientific Journal of Ilam University of Medical Sciences, vol. 22, no. 4, pp. 27–33 [in Persian].

Abu-Jafar, A. and Huleihel, M. (2017). Antiviral activity of Eucalyptus camaldulensis leaves ethanolic extract on herpes viruses infection. International Journal of Clinical Virology, vol. 1, pp. 1–9. DOI: https://doi.org/10.29328/journal.hjcv.1001001

Maroyi, A. (2017). Exotic plants in indigenous pharmacopoeia of south-central Zimbabwe: traditional knowledge of herbal medicines. Research Journal of Botany, vol. 12, no. 2, pp. .52–46 DOI: https://doi.org/10.3923/rjb.2017.46.52

Ghareeb, M. A., Habib, M. R., Mossalem, H. S., et al. (2018). Phytochemical analysis

of Eucalyptus camaldulensis leaves extracts and testing its antimicrobial and schistosomicidal activities. Bulletin of the National Research Centre, vol. 42, no. 1, p. .16

Trivedi, J., et al. (2019). “Plant-Derived Molecules in Managing HIV Infection,” in New Look to Phytomedicine, pp. 273–298. Cambridge, MA: Academic Press. DOI: https://doi.org/10.1016/B978-0-12-814619-4.00011-2

Ryz, N. R., Remillard, D. J., and Russo, E. B. (2017) Cannabis roots: a traditional therapy with future potential for treating inflammation and pain. Cannabis and Cannabinoid Research, vol. 2, no. 1, pp. .216–210 DOI: https://doi.org/10.1089/can.2017.0028

Ashfaq, U. A., Javed, T., Rehman, S., et al. (2011). Inhibition of HCV 3a core gene through Silymarin and its fractions. Virology Journal, vol. 8, no. 1, p. .153 DOI: https://doi.org/10.1186/1743-422X-8-153

Menéndez-Perdomo, I. M. and Sánchez-Lamar, Á. (2017). Phyllanthus plants in photoprotection: a broad spectrum of molecular mechanisms. Pharmacophore, vol. 8, no. .3

Dashtdar, M., Dashtdar, M. R., Dashtdar, B., et al. (2013). In-vitro, anti-bacterial activities of aqueous extracts of Acacia catechu (LF) Willd, Castanea sativa, Ephedra sinica stapf and shilajita mumiyo against Gram positive and Gram negative bacteria. Journal of Pharmacopuncture, vol. 16, no. 2: pp. .22–15 DOI: https://doi.org/10.3831/KPI.2013.16.014

Caveney, S., Charlet, D. A., Freitag, H., et al. (2001). New observations on the secondary chemistry of world Ephedra (Ephedraceae). American Journal of Botany, vol. 88, no. 7, pp. .1208–1199 DOI: https://doi.org/10.2307/3558330

Kmail, A., Lyoussi, B., Zaidet, H., et al. (2017). In vitro evaluation of anti-inflammatory and antioxidant effects of Asparagus aphyllus L., Crataegus azarolus L., and Ephedra alata Decne. in monocultures and co-cultures of HepG2 and THP-1-derived macrophages. Pharmacognosy Communications, vol. 7, no. 1, p. .24 DOI: https://doi.org/10.5530/pc.2017.1.4

Kallassy, H. Phytochemistry and biological activities of selected Lebanese plant species (Crataegus azarolus L. and Ephedra campylopoda). PhD Thesis. Université de Limoges, Université Libanaise (Liban), .2017

Park, S. B., Park, G. H., Kim, H. N., et al. (2018). Anti-inflammatory effect of the extracts from the branch of Taxillus yadoriki being parasitic in Neolitsea sericea in LPS-stimulated RAW264.7 cells. Biomedicine & Pharmacotherapy, vol. 104, pp. .7–1 DOI: https://doi.org/10.1016/j.biopha.2018.05.034

Wink, M. (2012). Medicinal plants: a source of anti-parasitic secondary metabolites. Molecules, vol. 17, no. 11, pp. .12791–12771 DOI: https://doi.org/10.3390/molecules171112771

Thirumurugan, K. (2010). Antimicrobial activity and phytochemical analysis of selected Indian folk medicinal plants. Steroids, vol. 1, p. .7

Naidoo, D., van Vuuren, S. F., van Zyl, R. L., et al. (2013). Plants traditionally used individually and in combination to treat sexually transmitted infections in northern Maputaland, South Africa: antimicrobial activity and cytotoxicity. Journal of Ethnopharmacology, vol. 149, no. 3, pp. 656–667.

Te, T., Mamba, P., and Adebayo, S. A. (2016). Antimicrobial, antioxidant and cytotoxicity studies of medicinal plants used in the treatment of sexually transmitted diseases. International Journal of Pharmacognosy and Phytochemical Research, vol. 8, no. 11, pp. .1895–1891

Li, W., Wang, X.-H., Luo, Z., et al. (2018). Traditional Chinese medicine as a potential source for HSV-1 therapy by acting on virus or the susceptibility of host. International Journal of Molecular Sciences, vol. 19, no. 10, p. 3266. DOI: https://doi.org/10.3390/ijms19103266

Van Vuuren, S. and Naidoo, D. (2010). An antimicrobial investigation of plants used traditionally in southern Africa to treat sexually transmitted infections. Journal of Ethnopharmacology, vol. 130, no. 3, pp. 552–558. DOI: https://doi.org/10.1016/j.jep.2010.05.045

Samba, B. M., Kabiné, O., Sahar, T. M., et al. (2015). Evaluation of antibacterial activity of some medicinal plants used in the treatment of sexually transmitted infections (STI) in Guinean traditional medicine. Journal of Plant Sciences, vol. 3, no. 1–2, pp. 6–10.

Mongalo, N., McGaw, L., Finnie, J., et al. (2017). Pharmacological properties of extracts from six South African medicinal plants used to treat sexually transmitted infections (STIs) and related infections. South African Journal of Botany, vol. 112, pp. 290–295. DOI: https://doi.org/10.1016/j.sajb.2017.05.031

Naidoo, D., Van Vuuren, S., Van Zyl, R., et al. (2013). Plants traditionally used individually and in combination to treat sexually transmitted infections in northern Maputaland, South Africa: antimicrobial activity and cytotoxicity. Journal of Ethnopharmacology, vol. 149, no. 3, pp. 656–667. DOI: https://doi.org/10.1016/j.jep.2013.07.018

Aberg, J. A., Gallant, J. E., Ghanem, K. G., et al. (2004). Primary care guidelines for the management of persons infected with human immunodeficiency virus: recommendations of the HIV Medicine Association of the Infectious Diseases Society of America. Clinical Infectious Diseases, vol. 39, no. 5, pp. .629–609 DOI: https://doi.org/10.1086/423390

Ndubani, P. and Höjer, B. (1999). Traditional healers and the treatment of sexually transmitted illnesses in rural Zambia. Journal of Ethnopharmacology, vol. 67, no. 1, pp. .25–15 DOI: https://doi.org/10.1016/S0378-8741(99)00075-6

Zachariah, R., Nkhoma, W., Harries, A. D., et al. (2002). Health seeking and sexual behaviour in patients with sexually transmitted infections: the importance of traditional healers in Thyolo, Malawi. Sexually Transmitted Infections, vol. 78, no. 2, pp. .129–127 DOI: https://doi.org/10.1136/sti.78.2.127

Green, E. C., Jurg, A., and Dgedge, A. (1993). Sexually−transmitted diseases, AIDS and traditional healers in Mozambique. Medical Anthropology, vol. 15, no. 3, pp. .281–261 DOI: https://doi.org/10.1080/01459740.1993.9966094

Workowski, K. A. and Bolan, G. A. (2015). Sexually transmitted diseases treatment guidelines, 2015. MMWR. Recommendations and reports: morbidity and mortality weekly report. Recommendations and Reports, vol. 64, RR-03, p. .1

Van Der Pol, B., Williams, J. A., Orr, D. P., et al. (2005). Prevalence, incidence, natural history, and response to treatment of Trichomonas vaginalis infection among adolescent women. The Journal of Infectious Diseases, vol. 192, no. 12, pp. 2039– .2044 DOI: https://doi.org/10.1086/498217

Baseman, J. G. and Koutsky, L. A. (2005). The epidemiology of human papillomavirus infections. Journal of Clinical Virology, vol. 32, pp. .24–16 DOI: https://doi.org/10.1016/j.jcv.2004.12.008

Tajallaie-Asl, F., Mardani, M., Shahsavari, S., et al. (2017). Menstruation phytotherapy according to Iran ethnobotanical sources. Journal of Pharmaceutical Sciences and Research, vol. 9, no. 6, pp. .990–986

Moradi, B., Abbaszadeh, S., Shahsavari, S., et al. (2018). The most useful medicinal herbs to treat diabetes. Biomedical Research and Therapy, vol. 5, no. 8, pp. 2538– .2551 DOI: https://doi.org/10.15419/bmrat.v5i8.463

Naghdi, N. (2018). Folklore medicinal plants used in liver disease: a review. International Journal of Green Pharmacy, vol. 12, no. .3

Van Vuuren, S. F. (2008). Antimicrobial activity of South African medicinal plants. Journal of Ethnopharmacology, vol. 119, no. 3, pp. .472–462 DOI: https://doi.org/10.1016/j.jep.2008.05.038

Shale, T. L., Stirk, W. A., and Van Staden, J. (1999). Screening of medicinal plants used in Lesotho for anti-bacterial and anti-inflammatory activity. Journal of Ethnopharmacology, vol. 67, no. 3, pp. .354–347 DOI: https://doi.org/10.1016/S0378-8741(99)00035-5

Prasad, D. M. R., Izam, A., Khan, Md. M. R. (2012). Jatropha curcas: plant of medical benefits. Journal of Medicinal Plants Research, vol. 6, no. 14, pp. .2699–2691 DOI: https://doi.org/10.5897/JMPR10.977

Naidoo, D. (2014). Safety and efficacy of traditional medicinal plant combinations for the treatment of sexually transmitted infections in Northern Maputaland, South Africa. PhD Thesis.

Tibiri, A., Sawadogo, W. R., Dao, A., et al. (2015). Indigenous Knowledge of Medicinal Plants Among Dozo Hunters: An Ethnobotanical Survey in Niamberla Village, Burkina Faso. The Journal of Alternative and Complementary Medicine, vol. 21, no. 5, pp. .303–294 DOI: https://doi.org/10.1089/acm.2014.0016

Malterud, K. (2017). Ethnopharmacology, chemistry and biological properties of four Malian medicinal plants. Plants, vol. 6, no. 1, p. .11 DOI: https://doi.org/10.3390/plants6010011

Chaleshtori, S., Rokni, N., Rafieian-kopaei, M., et al. (2015). Antioxidant and antibacterial activity of basil (Ocimum basilicum L.) essential oil in beef burger. Journal of Agricultural Science and Technology, vol. 17, no. 4, pp. 817–826.

Ghamari, S., Abbaszadeh, S., Mardani, M., et al. (2017). Identifying medicinal plants affecting the teeth from the Southern district of Ilam province, Iran. Journal of Pharmaceutical Sciences and Research, vol. 9, no. 6, p. 800.

Ghasemi Pirbalouti, A., Momeni, M., and Bahmani, M. (2013). Ethnobotanical study of medicinal plants used by Kurd tribe in Dehloran and Abdanan Districts, Ilam province, Iran. African Journal of Traditional, Complementary and Alternative Medicines, vol. 10, pp. 368–385. DOI: https://doi.org/10.4314/ajtcam.v10i2.24

Moayeri, A., Azimi, M., Karimi, E., et al. (2018). Attenuation of morphine withdrawal syndrome by prosopis farcta extract and its bioactive component luteolin in comparison with clonidine in rats. Medical Science Monitor Basic Research, vol. 24, pp. 151–158. DOI: https://doi.org/10.12659/MSMBR.909930

Bahmani, M., Khaksarian, M., Rafieian-Kopaei M, et al. (2018). Overview of the therapeutic effects of origanum vulgare and hypericum perforatum based on Iran’s ethnopharmacological documents. Journal of Clinical and Diagnostic Research, vol. 12, no. 7, pp. 1–4. DOI: https://doi.org/10.7860/JCDR/2018/34177.11728

Tajbakhsh, M., Karimi, A., Tohidpour, A., et al. (2018). The antimicrobial potential of a new derivative of cathelicidin from Bungarus fasciatus against methicillin-resistant Staphylococcus aureus. Journal of Microbiology, vol. 56, no. 2, pp. 128–137. DOI: https://doi.org/10.1007/s12275-018-7444-5

Abbasi, N., Mohammadpour, S., Karimi, E., et al. (2017). Protective effects of Smyrnium cordifolium Boiss essential oil on pentylenetetrazol-induced seizures in mice: Involvement of benzodiazepine and opioid antagonists. Journal of Biological Regulators and Homeostatic Agents, vol. 31, pp. 683–689.

Faryadian, S., Sydmohammadi, A., Khosravi, A., et al. (2014). Aqueous extract of echium amoenum elevate csf serotonin and dopamine level in depression rat. Biomedical and Pharmacology Journal, vol. 7, no. 1. Retrieved from: http: //biomedpharmajournal.org/?p=2875 DOI: https://doi.org/10.13005/bpj/463

Shokri, Z., Khoshbi, M., Koohpayeh, A., et al. (2018). Thyroid diseases: pathophysiology and new hopes in treatment with medicinal plants and natural antioxidants. International Journal of Green Pharmacy, vol. 12, no. 3, pp. 473–483.

Downloads

Published

2019-07-02

How to Cite

Nazer, M., Abbaszadeh, S., Darvishi, M., Kheirollahi, A., Shahsavari, S., & Moghadasi, M. (2019). The Most Important Herbs Used in the Treatment of Sexually Transmitted Infections in Traditional Medicine. Sudan Journal of Medical Sciences, 14(2), 41–64. https://doi.org/10.18502/sjms.v14i2.4691