Maternal Prenatal Microbiome and Infant’s Immune System at the Origins of the Development of Health and Disease

Abstract

Introduction: The human microbiome refers to the presence of microorganisms that live with its host. Objective: To analyze the relationship between the maternal perinatal microbiome and the development of the infant’s immune system, at the origins of the development of health and disease. Methodology: A non-systematic bibliographic review was carried out, including those controlled and randomized clinical trials focused on the relationship of the prenatal maternal microbiome and the infant’s immune system. And all those works whose approach was different from the topic raised were excluded. Discussion: 20 min after birth, the microbiome of newborns by vaginal delivery resembles the microbiota of their mother’s vagina, while those born by caesarean section house microbial communities that are usually found in human skin. The acquisition of the microbiome continues during the first years of life, with a microbiome of the baby’s gastrointestinal tract beginning to resemble that of an adult from the first year of life. Conclusion: Bacteria are microorganisms that have managed to colonize the vast majority of land surfaces, showing great adaptability. The human being is not indifferent, and hypotheses have been raised that affirm his participation in the development of health and the onset of the disease.


Keywords: microbiota, inmune system, infant nutritional physiological phenomena.


RESUMEN

Introducción: El microbioma humano se refiere a la presencia de microorganismos que conviven con su hospedero. Objetivo: Analizar la relación existente entre el microbioma materno perinatal y el desarrollo del sistema inmune del lactante, en los orígenes del desarrollo de la salud y enfermedad. Metodología: Se realizó una revisión bibliográfica no sistemática, donde se incluyeron aquellos ensayos clínicos controlados y randomizados enfocados en la relación del microbioma materno prenatal y el sistema inmune del lactante. Y se excluyeron todos aquellos trabajos cuyo enfoque fue diferente al tema planteado. Resultados: Se encontraron 61 fuentes bibliográficas, de las cuales se incluyeron 53 artículos que contenían la información relacionada al tema y publicados en los últimos 11 años. Discusión: 20 min después del nacimiento, el microbioma de los recién nacidos por parto vaginal se asemeja a la microbiota de la vagina de su madre, mientras que los nacidos por cesárea albergan comunidades microbianas que generalmente se encuentran en la piel humana. La adquisición del microbioma continúa durante los primeros años de vida, con un el microbioma del tracto gastrointestinal del bebé comienza a parecerse al de un adulto desde el primer año de vida. Conclusiones: Las bacterias, son microorganismos que han logrado colonizar la gran mayoría de las superficies terrestres, mostrando una gran capacidad de adaptación. El ser humano, no es indiferente, y se han planteado hipótesis que aseveran su participación en el desarrollo de la salud e inicio de la enfermedad.


Palabras clave: microbiota, sistema inmunológico, fenómenos fisiológicos nutricionales del lactante.

References
[1]Cho I, Blaser MJ. The human microbiome: At the interface of health and disease. Nature Reviews Genetics. 2012;13:260–70.

[2]Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480–4.

[3]Wang J, Qin J, Li Y, et al. A metagenome‐wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60.

[4]Gensollen T, Blumberg RS. Correlation between early‐life regulation of the immune system by microbiota and allergy development. Journal of Allergy and Clinical Immunology. 2017;139:1084–91.

[5]Turnbaugh PJ, Ley RE, Hamady M, Fraser‐Liggett CM, Knight R, Gordon JI. The Human Microbiome Project. Nature. 2007;449: 804–10.

[6]Peterson J, Garges S, Giovanni M, et al. The NIH Human Microbiome Project. Genome Res. 2009;19(12):2317–23.

[7]Qin J, Li R, Raes J, Arumugam M, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65.

[8]’Ome sweet’ omics‐ a genealogical treasury of words. National Library of Medicine. Available from: https://lhncbc.nlm.nih.gov/publication/lhncbc‐2001‐047

[9]Mackie RI, Sghir A, Gaskins HR. Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr. 1999;69(5):1035s‐1045s.

[10] Dominguez‐Bello MG, Blaser MJ, Ley RE, Knight R. Development of the human gastrointestinal microbiota and insights from high‐throughput sequencing. Gastroenterology. 2011;140(6):1713–9.

[11] Dominguez‐Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010;107(26):11971–5.

[12] Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. Development of the human infant intestinal microbiota. PLoS Biol. 2007;5(7):e177.

[13] Koenig JE, Spor A, Scalfone N, et al. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A. 2011;108(SUPPL. 1):4578–85.

[14] Fierer N, Lauber CL, Zhou N, McDonald D, Costello EK, Knight R. Forensic identification using skin bacterial communities. Proc Natl Acad Sci U S A. 2010;107(14):6477–81.

[15] Ursell LK, Metcalf JL, Parfrey LW, Knight R. Defining the human microbiome. Nutr Rev. 2012;70(Suppl. 1):S38.

[16] DiGiulio DB, Romero R, Amogan HP, et al. Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: A molecular and culture‐based investigation. PLoS One. 2008 ;3(8).

[17] DiGiulio DB. Diversity of microbes in amniotic fluid. Seminars in Fetal and Neonatal Medicine. 2012;17:2–11.

[18] Goldenberg RL, Culhane JF. Infection as a cause of preterm birth. Clinics in Perinatology. 2003;30:677–700.

[19] van Gorp C, de Lange IH, Spiller OB, et al. Protection of the ovine fetal gut against ureaplasma‐induced chorioamnionitis: A potential role for plant sterols. Nutrients. 2019;11(5).

[20] Kwak DW, Hwang HS, Kwon JY, Park YW, Kim YH. Co‐infection with vaginal Ureaplasma urealyticum and Mycoplasma hominis increases adverse pregnancy outcomes in patients with preterm labor or preterm premature rupture of membranes. J Matern Neonatal Med. 2014;27(4):333–7.

[21] Menon R, Dunlop AL, Kramer MR, Fortunato SJ, Hogue CJ. An overview of racial disparities in preterm birth rates: Caused by infection or inflammatory response? Acta Obstetricia et Gynecologica Scandinavica. 2011;90: 1325–31.

[22] Steel JH, Malatos S, Kennea N, et al. Bacteria and inflammatory cells in fetal membranes do not always cause preterm labor. Pediatr Res. 2005;57(3):404–11.

[23] Satokari R, Grönroos T, Laitinen K, Salminen S, Isolauri E. Bifidobacterium and Lactobacillus DNA in the human placenta. Lett Appl Microbiol. 2009;48(1):8–12.

[24] Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. Sci Transl Med. 2014;6(237):237-65.

[25] Nuriel‐Ohayon M, Neuman H, Koren O. Microbial changes during pregnancy, birth, and infancy. Frontiers in Microbiology. 2016;7:1031.

[26] Biedermann L, Rogler G. The intestinal microbiota: Its role in health and disease. European Journal of Pediatrics. 2015;174:151–67.

[27] Gosalbes MJ, Llop S, Vallès Y, Moya A, Ballester F, Francino MP. Meconium microbiota types dominated by lactic acid or enteric bacteria are differentially associated with maternal eczema and respiratory problems in infants. Clin Exp Allergy. 2013;43(2):198–211.

[28] Hu J, Nomura Y, Bashir A, et al. Diversified microbiota of meconium is affected by maternal diabetes status. PLoS One. 2013;8(11).

[29] Arrieta MC, Stiemsma LT, Amenyogbe N, Brown E, Finlay B. The intestinal microbiome in early life: Health and disease. Frontiers in Immunology. 2014;5.

[30] Jiménez E, Marín ML, Martín R, et al. Is meconium from healthy newborns actually sterile? Res Microbiol. 2008;159(3):187–93.

[31] Ardissone AN, de la Cruz DM, Davis‐Richardson AG, et al. Meconium microbiome analysis identifies bacteria correlated with premature birth. PLoS One. 2014;9(3):e90784.

[32] Gosalbes MJ, Llop S, Vallès Y, Moya A, Ballester F, Francino MP. Meconium microbiota types dominated by lactic acid or enteric bacteria are differentially associated with maternal eczema and respiratory problems in infants. Clin Exp Allergy. 2013;43(2):198–211.

[33] Bokulich NA, Chung J, Battaglia T, et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med. 2016;8(343):343-82.

[34] Navarro CW. La lactancia materna y sus propiedades microbioinmunológicas. Rev del Cuerpo Médico Hosp Nac Almanzor Aguinaga Asenjo. 2011;4(1):63–6.

[35] Rodríguez JM, Jiménez E, Merino V, Maldonado A, et al. Microbiota de la leche humana en condiciones fisiológicas. Acta Pediatr Esp. 2008;66(2):77–82.

[36] Ariza R, García M. El microbioma humano. Su papel en la salud y en algunas enfermedades. Cir Cir. 2012;80(4):128–33.

[37] Deyanira D, Rosa Hernández L, José E, Cabeza G, Niurka D, Castañeda S. La microbiota intestinal en el desarrollo del sistema inmune del recién nacido Intestinal microbiota in the development of the neonate’s immune system. Revista Cubana de Pediatría. 2014;86.

[38] Prince AL, Antony KM, Chu DM, Aagaard KM. The microbiome, parturition, and timing of birth: More questions than answers. J Reprod Immunol. 2014;104–105(C):12–9.

[39] Brunser O. El desarrollo de la microbiota intestinal humana, el concepto de probiótico y su relación con la salud humana. Rev Chil Nutr. 2013;40.

[40] Serrano CA, Harris PR. Development of intestinal microbiome in children. Impact on health and disease. Rev Chil Pediatr. 2016;87(3):151–3.

[41] Zamudio‐Vázquez VP, Ramírez‐Mayans JA, Toro‐Monjaraz EM, et al. Importancia de la microbiota gastrointestinal en pediatría. Acta Pediatr Mex. 2017;38(1):49–62.

[42] Torres J, Espinosa LL, García ÁM, Mideros AM, Usubillaga E. Características de recién nacidos con enterocolitis necrotizante en un hospital universitario de tercer nivel en Colombia. Colomb Med. 2011;42(4):468–75.

[43] Mena V, Riverón R, Pérez J, Paz B. Factores de riesgo asociados a la mortalidad por enterocolitis necrotizante. Rev Cuba Pediatr. 1998;70.

[44] Pacuruco AL, Carchi CM, Jaramillo KS, Beckman CV. Parámetros de laboratorio, indicadores de gravedad en prematuros con enterocolitis necrotizante. Rev Med Ecuador. 2009;15(3):213–21.

[45] James KM, Peebles RS, Hartert T V. Response to infections in patients with asthma and atopic disease: An epiphenomenon or reflection of host susceptibility? J Allergy Clin Immunol. 2012;130(2):343–51.

[46] Talbot TR, Hartert T V, Mitchel E, et al. Asthma as a risk factor for invasive pneumococcal disease. N Engl J Med. 2005;352(20):2082–90.

[47] Pekkanen J, Valkonen M, Täubel M, et al. Indoor bacteria and asthma in adults: A multicentre case–control study within ECRHS II. Eur Respir J. 2018;51(2).

[48] Machado MV, Cortez‐Pinto H. Diet, microbiota, obesity, and NAFLD: A dangerous quartet. International Journal of Molecular Sciences. 2016;17:1–20.

[49] Baothman OA, Zamzami MA, Taher I, Abubaker J, Abu‐Farha M. The role of Gut Microbiota in the development of obesity and diabetes. Lipids in Health and Disease. 2016;15

[50] Yu YH, Vasselli JR, Zhang Y, Mechanick JI, Korner J, Peterli R. Metabolic vs. hedonic obesity: A conceptual distinction and its clinical implications. Obesity Reviews. 2015;16:234–47.

[51] Cenit MC, Sanz Y, Codoñer‐Franch P. Influence of gut microbiota on neuropsychiatric disorders. World Journal of Gastroenterology. 2017’23:5486–98.

[52] Kelly JR, Minuto C, Cryan JF, Clarke G, Dinan TG. Cross talk: The microbiota and neurodevelopmental disorders. Frontiers in Neuroscience. 2017;11.

[53] Weber‐Stadlbauer U. Epigenetic and transgenerational mechanisms in infection‐mediated neurodevelopmental disorders. Translational Psychiatry. 2017;7: 1113.