Beta-Cyclodextrin: Eugenol Inclusion Complexes: Characterization and Antifungal Capacity

Abstract

Eugenol (EUG) is the principal component of clove essential oil. It has demonstrated excellent antifungal properties against B. cinerea, one of the most important fungus in the fresh fruit decay. However, this substance is highly volatile, thermolabile and the direct contact with a food induce undesirable changes in the organoleptic properties. For this reason, the application of EUG represents a big challenger and its encapsulation through inclusion complexes formation with β-cyclodextrin (β-CD) is presented as a solution. In this way, the aim of this work was to develop, characterize and assess the antifungal capacity of inclusion complexes β-CD:EUG. For this, co-precipitation was used as method of inclusion complexes synthesis. The quantity of entrapped EUG was determined by gaseous chromatography. The inclusion complexes were characterized by thermogravimetric analysis (TGA) and Fourier transform infrared (FTIR). Moreover, the antifungal activity was probed in a headspace system. Results showed that the EUG entrapped quantity was of 68,5 mg/g inclusion complexes. Furthermore, the characteristic peaks of EUG did not appear in inclusion complexes TGA thermogram and FTIR spectrum which confirm the effective compound encapsulation. Finally, inclusion complexes inhibited the growing of A. cinerea at 53% and avoided the fungal sporulation. These findings suggest that the β- CD:EUG inclusion complexes are suitable to use in the storage and transportation of fresh fruits to prevent their deterioration.


Keywords: Botrytis cinerea, fresh fruits, headspace.


Resumen


El eugenol (EUG) es el principal componente del aceite esencial de clavo de olor. Éste ha destacado por su efectivo control de Botrytis cinerea, uno de los hongos más importantes que provoca la pudrición de frutas frescas. Sin embargo, esta sustancia es altamente volátil, termolábil y provoca cambios desagradables en las propiedades organolépticas del alimento si está en contacto directo con el mismo, por lo que su aplicación presenta un gran desafío. Ante esto, se propone su encapsulación a través de la formación de complejos de inclusión con β-ciclodextrina (β-CD). En este sentido, el objetivo de la presente investigación fue desarrollar, caracterizar y evaluar la capacidad antifúngica de complejos de inclusión β-CD:EUG. Éstos se sintetizaron mediante el método de co-precipitación, y la cantidad de EUG atrapada en la β-CD fue cuantificada por cromatografía de gases. Los complejos de inclusión se caracterizaron a través de análisis termogravimétrico (TGA) y espectroscospía infrarroja con transformada de Fourier (FTIR). Además, su actividad antifúngica se evaluó en un sistema de espacio de cabeza. Los resultados mostraron que la cantidad de EUG atrapada fue de 68,5 mg/g de complejo de inclusión. Además, en su termograma TGA y espectro FTIR no se observaron los picos característicos del EUG, confirmando la efectiva encapsulación del compuesto. Finalmente, los complejos de inclusión inhibieron el 53% del crecimiento de B. cinerea y evitaron su esporulación. Estos resultados permiten sugerir el uso de complejos de inclusión β-CD:EUG en el almacenamiento y transporte de frutas frescas para prevenir su deterioro.


Palabras clave: Botrytis cinerea, frutas frescas, espacio de cabeza.

References
[1] Sivakumar D, Bautista-Baños S. A review on the use of essential oils for postharvest decay control and maintenance of fruit quality during storage. Crop Prot. 2014;64:27–37.

[2] Lloyd K, Mirosa M, Birch J. Active and intelligent packaging. Encycl Food Chem. 2019:January(1):177–82.

[3] World Health Organization. Increasing fruit and vegetable consumption to reduce the risk of noncommunicable diseases. World Health Organization;2019.

[4] Han J-W, Ruiz-Garcia L, Qian J-P, Yang X-T. Food packaging: A comprehensive review and future trends. Compr Rev Food Sci Food Saf. 2018;17(4):860– 77.

[5] Food and Agriculture Organization of the United Nations. Food wastage footprint: Impacts on natural resources - Summary report. Food and Agriculture Organization of the United Nations; 2013.

[6] Food and Agriculture Organization of the United Nations. Global food losses and food waste. Gustavsson J, Cederberg C, Sonesson U, Van Otterdijk R, Meybeck A, editors. Rome: FAO; 2011.

[7] Gao H, Wu W, Chen H, Qin Y, Fang X, Jin TZ. Microbial inactivation and quality improvement of tomatoes treated by package film with allyl isothiocyanate vapour. Int J Food Sci Technol. 2018;53(8):1983–91.

[8] Weiberg A, Wang M, Lin F-M et al. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science. 2013;342(6154):118–23.

[9] Zhang Z, Qin G, Li B, Tian S. Knocking Out Bcsas1 in botrytis cinerea impacts growth, development, and secretion of extracellular proteins, which decreases virulence. Mol Plant-Microbe Interact. 2014; 27(6):590–600.

[10] Fillinger S, Elad Y, editors. Botrytis – the fungus, the pathogen and its management in agricultural systems. Cham: Springer International Publishing; 2016.

[11] Brandhoff B, Simon A, Dornieden A, Schumacher J. Regulation of conidiation in Botrytis cinerea involves the light-responsive transcriptional regulators BcLTF3 and BcREG1. Curr Genet. 2017;63(5):931–49.

[12] Elad Y, Vivier M, Fillinger S. Botrytis – the fungus, the pathogen and its management in agricultural systems. Cham: Springer International Publishing; 2016. Botrytis, the good, the bad and the ugly.

[13] Williamson B, Tudzynski B, Tudzynski P, Van Kan JAL. Botrytis cinerea: The cause of grey mould disease. Mol Plant Pathol. 200;8(5):561–80.

[14] Murray K, Wu F, Shi J, Jun Xue S, Warriner K. Challenges in the microbiological food safety of fresh produce: Limitations of post-harvest washing and the need for alternative interventions. Food Qual Saf. 2017;1(4):289–301.

[15] Ahmed S, Roberto S, Domingues A et al. Effects of different sulfur dioxide pads on botrytis mold in ‘Italia’ table grapes under cold storage. Horticulturae. 2018;4(4):29.

[16] Saito S, Xiao CL. Evaluation of sulfur dioxide-generating pads and modified atmosphere packaging for control of postharvest diseases in blueberries. Acta Hortic. 2017;(1180):123–8.

[17] Ghoshal G. Recent trends in active, smart, and intelligent packaging for food products. Food Packag Preserv. 2018;343–74.

[18] Ribeiro-Santos R, Andrade M, Ramos de Melo N, Sanches-Silva A. Use of essential oils in active food packaging: Recent advances and future trends. Trends Food Sci Technol. 2017;61:132–40.

[19] Hill LE, Gomes C, Taylor TM. Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. LWT - Food Sci Technol. 2013;51(1):86–93.

[20] Pavithra B. Eugenol-A Review. Pharm Sci Res. 2014;6(3):153–4.

[21] Abbaszadeh S, Sharifzadeh A, Shokri H, Khosravi AR, Abbaszadeh A. Antifungal efficacy of thymol, carvacrol, eugenol and menthol as alternative agents to control the growth of food-relevant fungi. J Mycol Med. 2014; 24(2):151–156.

[22] Amiri A, Dugas R, Pichot AL, Bompeix G. In vitro and in vitro activity of eugenol oil (Eugenia caryophylata) against four important postharvest apple pathogens. Int J Food Microbiol. 2008;126(1–2):13–9.

[23] Olea A, Bravo A, Martínez R et al. Antifungal activity of Eugenol Derivatives against Botrytis Cinerea. Molecules. 2019;24(7):1239.

[24] Valverde JM, Guillén F, Martínez-Romero D, Castillo S, Serrano M, Valero D. Improvement of table grapes quality and safety by the combination of modified atmosphere packaging (MAP) and Eugenol, Menthol, or Thymol. J Agric Food Chem. 2005;53(19):7458–64.

[25] Kramer B, Wunderlich J, Muranyi P. Impact of volatile allyl isothiocyanate on fresh produce. Food Packag Shelf Life. 2018;16:220–4.

[26] Higueras L, López-Carballo G, Hernández-Muñoz P, Gavara R, Rollini M. Development of a novel antimicrobial film based on chitosan with LAE (ethyl- Nα-dodecanoyl-l-arginate) and its application to fresh chicken. Int J Food Microbiol. 2013;165(3):339–45.

[27] Fenyvesi É, Vikmon M, Szente L. Cyclodextrins in food technology and human nutrition: Benefits and limitations. Crit Rev Food Sci Nutr. 2016;56(12):1981–2004.

[28] Szente L, Fenyvesi É, Szente L, Fenyvesi É. Cyclodextrin-Enabled Polymer Composites for Packaging. Molecules. 2018;23(7):1556.

[29] Abarca RL, Rodríguez FJ, Guarda A, Galotto MJ, Bruna JE. Characterization of beta-cyclodextrin inclusion complexes containing an essential oil component. Food Chem. 2016;196:968–75.

[30] Herrera A, Rodríguez FJ, Bruna JE et al. Antifungal and physicochemical properties of inclusion complexes based on β- cyclodextrin and essential oil derivatives. Food Res Int. 2019;121:127–35.

[31] Crini G, Fourmentin S, Fenyvesi É, Torri G, Fourmentin M, Morin-Crini N. Cyclodextrins, from molecules to applications. Environ Chem Lett. 2018;16(4):1361–75.

[32] Saifull M, Islam Shishir MR, Ferdowsi R, Tanver Rahman MR, Van Vuong Q. Micro and nano encapsulation, retention and controlled release of flavor and aroma compounds: A critical review. Trends Food Sci Technol. 2019;86:230–51.

[33] Tanwar S, Barbey C, Dupont N. Experimental and theoretical studies of the inclusion complex of different linear aliphatic alcohols with cyclodextrins. Carbohydr Polym. 2019;217:26–34.

[34] Kfoury M, Auezova L, Greige-Gergesa H, Fourmentin S. Promising applications of cyclodextrins in food: Improvement of essential oils retention, controlled release and antiradical activity. Carbohydr Polym. 2015;131:264–72.

[35] Lu X, Chen J, Guo Z et al. Using polysaccharides for the enhancement of functionality of foods: A review. Trends Food Sci Technol. 2019 ;86:311–27.

[36] Yang Z, Xiao Z, Ji H. Solid inclusion complex of terpinen-4-ol/β -cyclodextrin: kinetic release, mechanism and its antibacterial activity. Flavour Fragr J. 2015;30(2):179–87.

[37] da Silva CG, Kano FS, dos Santos Rosa D. Thermal stability of the PBAT biofilms with cellulose nanostructures/essential oils for active packaging. J Therm Anal Calorim. 2019;138(4):2375–86.

[38] Han X, Zhang Z, Shen H, Zheng J, Zhang G. Comparison of structures, physicochemical properties and in vitro bioactivity between ferulic acid-β- cyclodextrin conjugate and the corresponding inclusion complex. Food Res Int. 2019;125:108619.

[39] Zheng K, Xiao S, Li W et al. Chitosan-acorn starch- eugenol edible film: Physico-chemical, barrier, antimicrobial, antioxidant and structural properties. Int J Biol Macromol. 2019; 135:344-352.

[40] Marques CS, Carvalho SG, Bertoli LD et al. β-Cyclodextrin inclusion complexes with essential oils: Obtention, characterization, antimicrobial activity and potential application for food preservative sachets. Food Res Int. 2019;119:499-509.

[41] Aguilar-González AE, Palou E, López-Malo A. Antifungal activity of essential oils of clove (Syzygium aromaticum) and/or mustard (Brassica nigra) in vapor phase against gray mold (Botrytis cinerea) in strawberries. Innov Food Sci Emerg Technol. 2015;32:181–5.

[42] Petrasch S, Knapp SJ, van Kan JAL, Blanco-Ulate B. Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea. Mol Plant Pathol. 2019; 20(6):877–92.