Obtention of Antimicrobial Fibers Type Core/Shell Pla/Pvoh-Lae By Coaxial Electrospinning

Abstract

Coaxial electrospinning (EC) is a technology that allows the encapsulation of active compounds, such as ethyl lauroyl arginate (LAE), in shell/core structures, in order to develop new antimicrobial materials for food packaging that slow down the release of active compounds and extend the food’s shelf life. For this reason, the objective of this study was to develop antimicrobial fibers shell/core type by EC. Two polymers with different hydrophilic character, polylactic acid (PLA) for the shell and polyvinyl alcohol (PVOH) and LAE for the core, were used to obtain PLA/PVOH-LAE fibers and slow the release of the antimicrobial compound. The morphology of fibers was evaluated by optical microscopy and their thermal properties through thermogravimetric analyses (TGA). LAE release studies were carried out in a fatty food simulant (ETOH 95%), and was compared with the minimum inhibitory concentration (MIC) values of LAE against a gram-positive bacteria, Listeria innnocua. The optical micrographs showed the obtaining of the shell/core structure with an average diameter of approximately 0.6 µm, and the TGA analyses demonstrated the thermal protection of LAE by the shell of the fibers. Released LAE reached the equilibrium state in ETOH 95% during the first 3 hours, maintaining a higher concentration than the MIC value obtained in L. innnocua (10 ppm). The results demonstrate that new packaging materials with antimicrobial activity such as PLA/PVOH-LAE polymeric fibers with a shell/core structure can be obtained through the coaxial electrospinning technique.


Keywords: coaxial electrospinning, ethyl lauroyl arginate, fibers, shell/core, food packaging.


Resumen


El electrohilado coaxial (EC) es una tecnología que permite encapsular compuestos activos como el etil lauroil arginato (LAE) en estructuras tipo pared/núcleo con la finalidad de desarrollar nuevos materiales antimicrobianos para el envasado de alimentos que ralenticen la liberación del compuesto y extiendan la vida útil del alimento. Por tal razón, el objetivo de este estudio consistió en desarrollar fibras antimicrobianas tipo pared/núcleo mediante EC. Dos polímeros con distinto carácter hidrofílico como el poli (ácido láctico) (PLA) para la pared y poli (alcohol vinílico) (PVOH) y LAE para el núcleo se utilizaron para obtener las fibras PLA/PVOH-LAE, y ralentizar la liberación del compuesto antimicrobiano. La morfología de las fibras se evaluó mediante microscopía óptica y sus propiedades térmicas mediante análisis termogravimétricos (TGA). Se realizaron estudios de liberación del LAE en un simulante de alimentos graso (ETOH 95%), y se comparó con la concentración mínima inhibitoria (MIC) hacia una bacteria Gram positiva Listeria innnocua. Las micrografías ópticas evidenciaron la obtención de la estructura pared/núcleo con un diámetro promedio de 0,6 µm aproximadamente, y el análisis TGA demostró la protección térmica del LAE por la pared de las fibras. El LAE liberado alcanzó el estado de equilibrio en ETOH 95% durante las 3 hr iniciales, manteniendo una concentración superior a la MIC obtenida para L. innnocua (10 ppm). Los resultados demuestran que nuevos materiales de envase con actividad antimicrobiana como fibras poliméricas PLA/PVOH-LAE con estructura pared/núcleo pueden ser obtenidos mediante la técnica de electrohilado coaxial.


Palabras clave: electrohilado coaxial, etil lauroil arginato, fibras, pared/núcleo, envase de alimentos.

References
[1] Ali A, Laura G. Gómez-Mascaraque, Marta M-S, López-Rubio A. Electrospun curcumin-loaded protein nanofiber mats as active/bioactive coatings for food packaging applications. Food Hydrocoll. 1 de febrero de 2019;87:758-71.

[2] Quiles-Carrillo L, Montanes N, Lagaron J, Balart R, Torres-Giner S, Quiles-Carrillo L, et al. Bioactive Multilayer Polylactide Films with Controlled Release Capacity of Gallic Acid Accomplished by Incorporating Electrospun Nanostructured Coatings and Interlayers. Appl Sci. 5 de febrero de 2019;9(3):533.

[3] Armentano I, Bitinis N, Fortunati E, Mattioli S, Rescignano N, Verdejo R, et al. Multifunctional nanostructured PLA materials for packaging and tissue engineering. Prog Polym Sci. octubre de 2013;38(10-11):1720-47.

[4] Lima EMB, Lima AM, Minguita APS, Rojas dos Santos NR, Pereira ICS, Neves TTM, et al. Poly(lactic acid) biocomposites with mango waste and organo- montmorillonite for packaging. J Appl Polym Sci. 5 de junio de 2019;136(21):47512.

[5] Wang B, Chen Z, Zhang J, Cao J, Wang S, Tian Q, et al. Fabrication of PVA/graphene oxide/TiO2 composite nanofibers through electrospinning and interface sol–gel reaction: Effect of graphene oxide on PVA nanofibers and growth of TiO2. Colloids Surfaces A Physicochem Eng Asp. septiembre de 2014;457:318-25.

[6] Nerin C, Becerril R, Manso S, Silva F. Ethyl Lauroyl Arginate (LAE): Antimicrobial Activity and Applications in Food Systems. Antimicrob Food Packag. 1 de enero de 2016;305-12.

[7] Zupančič Š. Core-shell nanofibers as drug delivery systems. Acta Pharm. 1 de junio de 2019;69(2):131-53.

[8] Johnson R, Ding Y, Nagiah N, Monnet E, Tan W. Coaxially-structured fibres with tailored material properties for vascular graft implant. Mater Sci Eng C. 2019;97:1-11.

[9] Yao Z-C, Chang M-W, Ahmad Z, Li J-S. Encapsulation of rose hip seed oil into fibrous zein films for ambient and on demand food preservation via coaxial electrospinning. J Food Eng. 2016;191:115-23.

[10] Hajipour M, Fromm K, Ashkarran A, Jimenez de Aberasturi D, Ruiz de Larramendi I, Rojo T, et al. Antibacterial properties of nanoparticles. Trends Biotechnol. 1 de octubre de 2012;30(10):499-511.

[11] Van de Vel E, Sampers I, Raes K. A review on influencing factors on the minimum inhibitory concentration of essential oils. Vol. 59, Critical Reviews in Food Science and Nutrition. Taylor and Francis Inc.; 2019. p. 357-78.

[12] Higueras L, López-Carballo G, Hernández-Muñoz P, Gavara R, Rollini M. Development of a novel antimicrobial film based on chitosan with LAE (ethyl- Nα-dodecanoyl-l-arginate) and its application to fresh chicken. Int J Food Microbiol. 1 de agosto de 2013;165(3):339-45.

[13] Haghighi H, De Leo R, Bedin E, Pfeifer F, Siesler HW, Pulvirenti A. Comparative analysis of blend and bilayer films based on chitosan and gelatin enriched with LAE (lauroyl arginate ethyl) with antimicrobial activity for food packaging applications. Food Packag Shelf Life. 1 de marzo de 2019;19:31-9.

[14] Muriel-Galet V, López-Carballo G, Gavara R, Hernández-Muñoz P. Antimicrobial food packaging film based on the release of LAE from EVOH. Int J Food Microbiol [Internet]. 2 de julio de 2012 [citado 25 de marzo de 2020];157(2):239- 44. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/22640726

[15] da Silva TN, Gonçalves RP, Rocha CL, Archanjo BS, Barboza CAG, Pierre MBR, et al. Controlling burst effect with PLA/PVA coaxial electrospun scaffolds loaded with BMP-2 for bone guided regeneration. Mater Sci Eng C. 1 de abril de 2019;97:602-12.

[16] López de Dicastillo C, Patiño C, Galotto M, Palma J, Alburquenque D, Escrig J. Novel Antimicrobial Titanium Dioxide Nanotubes Obtained through a Combination of Atomic Layer Deposition and Electrospinning Technologies. Nanomaterials. 24 de febrero de 2018;8(2):128.

[17] Gonçalves RP, da Silva FFF, Picciani PHS, Dias ML. Morphology and Thermal Properties of Core-Shell PVA/PLA Ultrafine Fibers Produced by Coaxial Electrospinning. Mater Sci Appl. 2015;06(02):189-99.

[18] Gaikwad KK, Lee SM, Lee JS, Lee YS. Development of antimicrobial polyolefin films containing lauroyl arginate and their use in the packaging of strawberries. J Food Meas Charact. 1 de diciembre de 2017;11(4):1706-16.

[19] Deng L, Taxipalati M, Zhang A, Que F, Wei H, Feng F, et al. Electrospun Chitosan/Poly(ethylene oxide)/Lauric Arginate Nanofibrous Film with Enhanced Antimicrobial Activity. J Agric Food Chem. 20 de junio de 2018;66(24):6219-26.

[20] López de Dicastillo C, Garrido L, Alvarado N, Romero J, Palma J, Galotto M. Improvement of Polylactide Properties through Cellulose Nanocrystals Embedded in Poly(Vinyl Alcohol) Electrospun Nanofibers. Nanomaterials. 11 de mayo de 2017;7(5):106.

[21] Alvarado N, Romero J, Torres A, Lopez De Dicastillo C, Rojas A, Galotto MJ, et al. Supercritical impregnation of thymol in poly(lactic acid) filled with electrospun poly(vinyl alcohol)-cellulose nanocrystals nanofibers: Development an active food packaging material. J Food Eng. 2017;217:1-10.

[22] Muriel-Galet V, López-Carballo G, Hernández-Muñoz P, Gavara R. Characterization of ethylene-vinyl alcohol copolymer containing lauril arginate (LAE) as material for active antimicrobial food packaging. Food Packag Shelf Life. 1 de marzo de 2014;1(1):10-8.