Methods of Synthesis of Oxides of Iron and Removing Compounds Arsenic in Water

Abstract

Environmental pollution by heavy metals has been extensively researched using different materials and techniques but, this problem has not been fully resolved. High adsorption capacity of iron oxides such as hematite, magnetite, goethite and, ferrihydrite to remove arsenic are described in this review. There are many international investigations about the minerals of iron oxides and they describe the composition, properties, synthesis methods and involved variables. Active carbon, silicones and polymers had been used to obtain composites with iron oxides and they have gave better results to remove different anions and cations. The aim in this paper is to introduce studies already carried out and encourage research in this topic to take advantage of the particular characteristics of iron oxides and use them in the environmental remediation. In addition, it is important to introduce the natural iron oxides availability that have a lot of field to study. The literature search on the subject was carried out in Science Direct and high impact articles related to natural or synthetic oxides were used.


Keywords: Arsenic, hematite, magnetite, goethite, iron composites.


Resumen


La contaminación ambiental por metales se ha estudiado mucho con diferentes materiales y técnicas, pero aún no se ha logrado resolver por completo este problema. La alta capacidad de adsorción de los óxidos de hierro como la hematita, magnetita, goetita, ferrihidrita, para la remoción de arsénico en agua son descritos en este trabajo de revisión. Existen muchas investigaciones internacionales de los óxidos de hierro en las que se expone la composición de estos minerales, las propiedades, métodos de síntesis y las variables que intervienen. El carbón activo, las siliconas y los polímeros son materiales que se han usado para formar compositos con estos óxidos que han contribuido a obtener mejores resultados en la remoción de diferentes aniones y cationes. Con este trabajo se pretende difundir estudios ya realizados e incentivar la investigación en este campo para aprovechar las características particulares de los óxidos de hierro y usarlos como remediadores ambientales. Ademas, es importante dar a conocer la existencia de óxidos de hierro naturales que dejan mucho campo por estudiar.

References
[1] Quansah R, Armah FA, Essumang DK et al. Association of arsenic with adverse pregnancy outcomes/ infant mortality. Enviromental Heal Perspect. 2015;123(5):412–22.

[2] Minatel BC, Sage AP, Anderson C et al. Environmental arsenic exposure: From genetic susceptibility to pathogenesis. Environ Int. 2018;112:183–97.

[3] Khan KM, Chakraborty R, Bundschuh J, Bhattacharya P, Parvez F. Health effects of arsenic exposure in Latin America: An overview of the past eight years of research. Sci Total Environ. 2020;710:136071.

[4] Hao L, Liu M, Wang N, Li G. A critical review on arsenic removal from water using iron-based adsorbents. RSC Adv. 2018;8(69):39545–60.

[5] Polowczyk I, Cyganowski P, Ulatowska J, Sawiński W, Bastrzyk A. Synthetic iron oxides for adsorptive removal of arsenic. Water Air Soil Pollut. 2018;229(6):1–10.

[6] Elisabeth A. Retención de contaminantes metálicos y arsénico por oxo (hidr) óxidos de hierro puros y sustituídos. [Doctoral thesis]. Buenos Aires: Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires; 2013.

[7] Magnesio CONÓDE. Adosrción de arsénico en zeolita natural pretratada con oxidos de magnesio. Rev Int Contam Ambient. 2009;25(4):217–27.

[8] Journal AI, Gallegos-garcia M, Ramírez-muñiz K, Song S. Arsenic removal from water by adsorption using iron oxide minerals as adsorbents: A review. Miner Process Extr Metall Rev An Int J. 2012;7508(May).

[9] Giles DE, Mohapatra M, Issa TB, Anand S, Singh P. Iron and aluminium based adsorption strategies for removing arsenic from water. J Environ Manage. 2011;92(12):3011–22.

[10] Rabung T, Geckeis H, Kim J, Beck HP. Sorption of Eu (III) on a Natural Hematite: Application of a Surface Complexation Model. 1998;161:153–61.

[11] Gim J, Pablo J De, Rovira M, Duro L. Arsenic sorption onto natural hematite, magnetite, and goethite. 2007;141:575–80.

[12] Aredes S, Klein B, Pawlik M. The removal of arsenic from water using natural iron oxide minerals q. J Clean Prod. 2013;60:71–6.

[13] Zhang W, Singh P, Paling E, Delides S. Arsenic removal from contaminated water by natural iron ores. Miner Eng. 2004;17:517–24.

[14] Evier ELS. Adsorption technique for the treatment of As (V) -rich effluents. Colloids Surfaces A ehysicochemical Eng Asp. 1996;

[15] Mayo JT, Yavuz C, Yean S et al. The effect of nanocrystalline magnetite size on arsenic removal. Sci Technol Adv Mater. 2017;6996(October).

[16] Mamindy-pajany Y, Hurel C, Marmier N. Arsenic adsorption onto hematite and goethite. C R Chim. 2009;12:876–81.

[17] Mohan D, Pittman CU. Arsenic removal from water/wastewater using adsorbents — A critical review. J Hazard Mater. 2007;142:1–53.

[18] Lafferty BJ, Loeppert RH. Methyl Arsenic Adsorption and Desorption Behavior on Iron Oxides. Environ Sci Technol. 2005;39(7):2120–7.

[19] Guo H, Stu D, Berner Z. Removal of arsenic from aqueous solution by natural siderite and hematite. Appl Geochemistry. 2007;22:1039–51.

[20] Viet PH, Con TH, Ha CT et al. Investigation of arsenic removal technologies for drinking water in Vietnam. Arsen Expo Heal Eff V. 2003;459–69.

[21] Liu H, Chen T, Frost RL. An overview of the role of goethite surfaces in the environment. Chemosphere. 2014;103:1–11.

[22] Jaiswal A, Banerjee S, Mani R, Chattopadhyaya MC. Synthesis, characterization and application of goethite mineral as an adsorbent. Biochem Pharmacol. 2013;1(3):281–9.

[23] Lunin A V, Kolychev EL, Mochalova EN, Cherkasov VR, Nikitin MP. Synthesis of highly-specific stable nanocrystalline goethite-like hydrous ferric oxide nanoparticles for biomedical applications by simple precipitation method. J Colloid Interface Sci. 2019;541:143–9.

[24] Nørlund A, Jensen TR, Bahl CRH, Dimasi E. Nano size crystals of goethite, a -FeOOH: Synthesis and thermal transformation. J Solid State Chem. 2007;180:1431–5.

[25] Zhou Z, Su M, Shih K. Highly efficient and recyclable graphene oxide-magnetite composites for isatin mineralization. J Alloys Compd. 2017;

[26] Kong D, Wilson LD. Synthesis and characterization of cellulose-goethite composites and their adsorption properties with roxarsone. Carbohydr Polym. 2017;169:282–94.

[27] Taleb K, Markovski J, Hristovski KD, Rajakovic VN. Aminated glycidyl methacrylates as a support media for goethite nanoparticle enabled hybrid sorbents for arsenic removal: From copolymer synthesis to full-scale system modeling. Resour Technol. 2016;2:15–22.

[28] Ramirez-muñiz K, Perez-rodriguez F, Rangel-mendez R. Adsorption of arsenic onto an environmental friendly goethite-polyacrylamide composite. J Mol Liq. 2018;264:253–60.

[29] Ponomar VP. Synthesis and magnetic properties of magnetite prepared by chemical reduction from hematite of various particle sizes. J Alloys Compd. 2018;741:28–34.

[30] Ganesan V, Lahiri BB, Louis C, Philip J, Damodaran SP. Size-controlled synthesis of superparamagnetic magnetite nanoclusters for heat generation in an alternating magnetic field. J Mol Liq. 2019;281:315–23.

[31] Suppiah DD, Bee S, Hamid A. One step facile synthesis of ferromagnetic magnetite nanoparticles. J Magn Magn Mater. 2016;414:204–8.

[32] Bezdorozhev O, Kolodiazhnyi T, Vasylkiv O. Precipitation synthesis and magnetic properties of selfassembled magnetite-chitosan nanostructures. J Magn Mater. 2016;

[33] Alfredo V, Villegas R, Isaías J et al. Synthesis and characterization of magnetite nanoparticles for photocatalysis of nitrobenzene. J Saudi Chem Soc. 2019;

[34] Jorge M, Nilson M, Machuca-martínez F. Data on the removal of metals (Cr3+, Cr6+, Cd2+, Cu2+, Ni2+, Zn2+) from aqueous solution by adsorption using magnetite particles from electrochemical synthesis. Data Br. 2019;24.

[35] Kashif M, Kim Y, Choi Y. Magnetite synthesis using iron oxide waste and its application for phosphate adsorption with column and batch reactors. Chem Eng Res Des. 2019;148:169–79.

[36] Ozcan F, Ersoz M, Yilmaz M. Preparation and application of calix [4] arene-grafted magnetite nanoparticles for removal of dichromate anions. Mater Sci Eng C. 2009;29(8):2378–83.

[37] Kashif M, Phearom S, Choi Y. Chemosphere Synthesis of magnetite from raw mill scale and its application for arsenate adsorption from contaminated water. Chemosphere. 2018;203:90–5.

[38] Marín T, Montoya P, Arnache O, Pinal R, Calderón J. Development of magnetite nanoparticles/gelatin composite films for triggering drug release by an external magnetic field. Mater Des. 2018;152:78–87.

[39] Berger D, Maria C, Ionita D, Valentin I. Box-Behnken experimental design for chromium (VI) ions removal by bacterial cellulose-magnetite composites. Int J Biol Macromol. 2016;(Vi).

[40] Selim MS, Elmarakbi A, Azzam AM, Shenashen MA. Progress in Organic Coatings Eco-friendly design of superhydrophobic nano-magnetite/silicone composites for marine foul-release paints. Prog Org Coatings. 2018;116(February 2017):21–34.

[41] Ding C, Cheng W, Nie X, Yi F. Synergistic mechanism of U (VI) sequestration by magnetite-graphene oxide composites: Evidence from spectroscopic and theoretical calculation. Chem Eng J. 2017;324:113– 21.

[42] Shokrollahi H. A review of the magnetic properties, synthesis methods and applications of maghemite. J Magn Magn Mater. 2017;426( July 2016):74–81.

[43] Patra D, Gopalan B, Ganesan R. Direct solid-state synthesis of maghemite as a magnetically recoverable adsorbent for the abatement of methylene blue. J Environ Chem Eng. 2019;7(5):103384.

[44] Ianoș R, Moacă E, Căpraru A, Lazău R, Păcurariu C. Maghemite, γ-Fe2O3, nanoparticles preparation via carbon-templated solution combustion synthesis. Ceram Int. 2018;

[45] Dyer L, Fawell PD, Newman OMG, Richmond WR. Synthesis and characterisation of ferrihydrite/silica co-precipitates. J Colloid Interface Sci. 2010;348(1):65–70.

[46] Pariona N, Camacho-aguilar KI, Ramos-gonzález R, Martinez AI, Herrera-trejo M, Baggio-saitovitch E. Magnetic and structural properties of ferrihydrite/hematite nanocomposites. J Magn Magn Mater. 2016;406:221–7.