Obtaining Protein Hydrolyzates By-products of Agaricus Bisporus

Abstract

The mushroom industry generates non-marketable by-products that are not used or misused, these by-products are rich in protein and other beneficial compounds for health. Currently there is great interest in products rich in protein from agro-industrial waste, in this study was used mushroom by-products to obtain protein concentrates and isolates in order to improve functional properties, using a biotechnological process based on the use of proteases, with an effective approach for the maximum recovery of the components, maintaining their quality and effectiveness. It was used 4 different proteases (Alcalasa®, Flavourzyme®, Papain and Bioprotease LA-450) to determine which of them is most effective, the most efficient proteases that lead to a higher hydrolysis degree is used Bioprotease LA-450 and Alcalasa® (6.65 ± 0.6 and 6.21 ± 0.9) respectively, obtaining a higher amount of solubilized products (46.3 ± 3.6% and 41.7 ± 3%), as well as the Bioprotease LA-450, who presents a higher content of total proteins (51. 9 ± 4.8). This hydrolyzate, due to its composition: rich in amino acids, oligopeptides and peptides, can be used as a biofertilizer in agronomy, and as a nutraceutical or nutricosmetic in food or cosmetics.


Keywords: Agaricus bisporus, Enzymes, Protein hydrolysates, By-product.


Resumen


La industria del champiñón genera subproductos no comercializables que no se utilizan o mal utilizan, estos subproductos son ricos en proteínas y otros compuestos beneficiosos para la salud. Actualmente existe gran interés en los productos ricos en proteína provenientes de residuos agroindustriales, en este estudio se utilizó los subproductos del champiñón para obtener concentrados y aislados de proteínas con el fin de mejorar las propiedades funcionales, utilizando un proceso biotecológico basado en el uso de proteasas, con un enfoque efectivo para la recuperación máxima de los componentes, manteniendo su calidad y efectividad. Se usó 4 diferentes proteasas (Alcalasa®, Flavourzyme®, Papaína y Bioproteasa LA-450) para determinar cuál de ellas es la más efectiva, las proteasas más eficientes que conducen a un mayor grado de hidrólisis es cuando se utilizan la Bioproteasa LA-450 y la Alcalasa® (6,65 ± 0,6 y 6,21 ± 0,9) respectivamente, obteniéndose mayor cantidad de productos solubilizados (46,3 ± 3,6% y 41,7 ± 3%), así como la Bioproteasa LA-450 que presenta mayor contenido de proteínas totales (51,9±4,8). Este hidrolizado debido a su composición: rico en aminoácidos, oligopéptidos y péptidos puede ser utilizado como biofertilizante en agronomía, y nutracéutico o nutricosmético en alimentación o cosmética.


Palabras Clave: Agaricus bisporus, Enzimas, Hidrolizados proteicos, Subproducto.

References
[1] Royse et al. Edible and medicinal mushrooms: Technology and applications. Cunha ZD and Arturo PG, editors. Wiley Online Library; 2017. Chapter

[2] Cremades O, Diaz-Herrero MM, Carbonero-Aguilar P, Gutierrez-Gil JF, Fontiveros E, Bautista J. White button mushroom ergothioneine aqueous extracts obtained by the application of enzymes and membrane technology. Food Biosci. 2015;10:42-47.

[3] Bishop KS, Kao CH, Xu Y, Glucina MP, Paterson RRM, Ferguson LR. From 2000 years of Ganoderma lucidum to recent developments in nutraceuticals. Phytochemistry. 2015;114:56-65.

[4] Amza T, Balla A, Tounkara F, Man L, Zhou HM. Effect of hydrolysis time on nutritional, functional and antioxidant properties of protein hydrolysates prepared from gingerbread plum (Neocarya macrophylla) seeds. Int Food Res J. 2013;20(5):2081–2090.

[5] Kristinsson HG, Rasco BA. Fish protein hydrolysates: production, biochemical, and functional properties. Crit Rev Food Sci Nutr. 2013;40(1):43-81.

[6] Aspmo SI, Horn SJ, Eijsink VG. Enzymatic hydrolysis of Atlantic cod (Gadus morhua L.) viscera. Process Biochem. 2005;40(5):1957-1966.

[7] Darewicz M, Borawska J, Vegarud GE, Minkiewicz P Iwaniak A. Angiotensin I-converting enzyme (ACE) inhibitory activity and ACE inhibitory peptides of salmon (Salmo salar) protein hydrolysates obtained by human and porcine gastrointestinal enzymes. Int J Mol Sci. 2014;15(8):14077-14101.

[8] Silveira ST, Martínez-Maqueda D, Recio I, Hernández-Ledesma B. Dipeptidyl peptidase-IV inhibitory peptides generated by tryptic hydrolysis of a whey protein concentrate rich in β-lactoglobulin. Food Chem X. 2013;141(2):1072-1077.

[9] Millward DJ, Layman DK, Tomé D, Schaafsma G. Protein quality assessment: impact of expanding understanding of protein and amino acid needs for optimal health. Am. J. Clin. Nutr. 2008;87(5):1576S- 1581S.

[10] Mccarthy AL, O’Callaghan YC, O’Brien NM. Protein hydrolysates from agricultural crops-bioactivity and potential for functional food development. Agriculture. 2013; 3(1):112-130.

[11] Xu X, Guo S, Hao X, Ma H, Bai Y, Huang Y. Improving antioxidant and antiproliferative activities of colla corii asini hydrolysates using ginkgo biloba extracts. Food Sci Nutr. 2018. doi: 10.1002 / fsn3.587

[12] Farvin KHS, Andersen LL, Otte J, Nielsen HH, Jessen F, Jacobsen C. Antioxidant activity of cod (Gadus morhua) protein hydrolysates: Fractionation and characterisation of peptide fractions. Food Chem. 2016;204:409.

[13] Karnjanapratum S, O’Callaghan YC, Benjakul S, O’Brien N. Antioxidant, immunomodulatory and antiproliferative effects of gelatin hydrolysate from unicorn leatherjacket skin. J. Sci. Food Agric. 2015;96:3220–3226.

[14] Sah BNP, Vasiljevic T, Mckechnie S, Donkor ON. Effect of probiotics on antioxidant and antimutagenic activities of crude peptide extract from yogurt. Food Chem. 2014;156:264.

[15] Inca-Torres AR, Urbina-Salazar ADR, Falcón-García G et al. Hydrolytic enzymes production by Bacillus licheniformis growth on fermentation media formulated with sewage sludge. J Biotech Res. 2018;9:14- 26.

[16] AOAC. 18th ed. Washington, D.C.: Official Methods of Analysis; 2006.

[17] MAPA. Madrid: Métodos oficiales de análisis; 1994.

[18] Inca-Torres A R. Revalorización de los subproductos de la industria de hongos y setas comestibles. Aplicación a la obtención de productos de alto valor añadido. [Doctoral thesis]. Sevilla: Universidad de Sevilla; 2019.

[19] Bagul MB, Sonawane SK, Arya SS. Bioactive characteristics and optimization of tamarind seed protein hydrolysate for antioxidant-rich food formulations. 3 Biotech. 2018;8(4):218.

[20] Sewczyk T, Antink MH, Maas M, Kroll S, Beutel S. Flow rate dependent continuous hydrolysis of protein isolates. AMB Express. 2018;8(1):18.

[21] Espejo CFJ. Obtención de hidrolizados de proteínas de leche de cabra con actividad inhibidora de la enzima convertidora de la angiotensina. [Doctoral thesis]. Granada: Universidad de Granada; 2013.

[22] Adler-Nissen J. Enzymatic hydrolysis of food proteins. Elsevier; 1986.

[23] Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680-685.

[24] Schägger H, Von JG. Tricine sodium dodecyl sulfate polyacrylamide gel electrophoresis for protein separation in the range 1 to 100 kDa. Anal. Biochem. 1987;166(2):368-379.

[25] Cremades O, Diaz-Herrero MM, Carbonero-Aguilar P et al. Preparation and characterisation of seleniumenriched mushroom aqueous enzymatic extracts (MAEE) obtained from the white button mushroom (Agaricus bisporus). Food Chem. 2012;133(4):1538-1543.

[26] Chalamaiah M, Kumar BD, Hemalatha R, Jyothirmayi T. Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review. Food Chem. 2012;135:3020–3038.

[27] Hou H, Li B, Zhao X, Zhang Z, Li P. Optimization of enzymatic hydrolysis of Alaska pollock frame for preparing protein hydrolysates with low-bitterness. LWT. Food Sci. Technol. Res. 2011;44(2):421-428.

[28] Villanueva A, Clemente A, Bautista J, Millán F. Production of an extensive sunflower protein hydrolysate by sequential hydrolysis with endo- and exo-proteases. Grasas y Aceites. 1999a;50(6):472–476.

[29] Villanueva A, Vioque J, Sánchez-Vioque R et al. Peptide characteristics of sunflower protein hydrolysates. J Am Oil Chem Soc. 1999b;76(12):1455-1460.

[30] Ward AJ, Hobbs PJ, Holliman PJ, Jones DL. Optimisation of the anaerobic digestion of agricultural resources. Bioresour. Technol. 2008;99(17):7928-7940.