Biosorption of CD2+ and PB2+ with Cocoa Bark: Experimentation, Mathematical Modeling and Simulation Numerical

Abstract

Cocoa shell is a potential adsorbent for the removal of pollutants from wastewater. The goal of this study was to compare, model and simulate the removal of Pb2+ and Cd2+ in a fixed bed column using cocoa shell. The experimental studies were carried out in a laboratory burette with a bed height of 10.5 cm, a volumetric flow of 2 mL/min, and a metal concentration of 10 mg/L. The empirical models of Thomas, Dose-Response, and Wang were used to study the dynamic behavior of biosorption, in addition a mathematical model based on a differential mass balance of the column was proposed to study the effect of the axial dispersion phenomenon. The results indicated that the active sites of cocoa shell have a higher affinity for the Pb2+ cation, with breakthrough and saturation times higher than Cd2+. The Dose-Response model was the one that presented the best fit with experimental data, confirming that the adsorption capacity of the cocoa shell is superior with Pb2+. The axial dispersion phenomenon is relevant and should not be neglected in the approach of laboratory scale models.


Keywords: cocoa shell, biosorption, heavy metals, numerical simulation.


Resumen


La corteza de cacao es un potencial adsorbente para la eliminación de contaminantes de aguas residuales. El objetivo de este estudio fue comparar, modelar y simular la remoción de Pb2+ y Cd2+ en columna de lecho fijo utilizando corteza de cacao. Los estudios experimentales se llevaron a cabo en una bureta de laboratorio con una altura de lecho de 10.5 cm, flujo volumétrico de 2 mL/min, y concentración de metal de 10 mg/L. Los modelos empíricos de Thomas, Dosis-Respuesta, y Wang fueron usados para estudiar el comportamiento dinámico de la biosorción, adicionalmente un modelo matemático basado en un balance de masa diferencial de la columna fue planteado para estudiar el efecto del fenómeno de dispersión axial. Los resultados señalaron que los sitios activos de la corteza de cacao tienen mayor afinidad por el catión Pb2+, con tiempos de ruptura y saturación superiores a la del Cd2+. El modelo Dosis- Respuesta fue el que presento mejor ajuste con los datos experimentales, confirmando que la capacidad de adsorción de la corteza es superior con Pb2+. El fenómeno de dispersión axial es relevante y no debe ser despreciado en el planteamiento de modelos a escala de laboratorio.


Palabras Clave: Corteza de cacao, biosorción, metales pesados, simulación numérica.

References
[1] Musilova J, Arvay J, Vollmannova A, Toth T, Tomas J. Environmental contamination by heavy metals in region with previous mining activity. Bull Environ Contam Toxicol. 2016; 97(4):569–75.

[2] Akpor OB. Heavy metal pollutants in wastewater effluents: Sources, effects and remediation. Adv Biosci Bioeng. 2014;2(4):37.

[3] Akif M, Khan AR, Sok K et al. Textile effluents and their contribution towards aquatic pollution in the Kabul River (Pakistan). J Chem Soc Pakistan. 2002;24(2):106–11.

[4] Rana MN, Tangpong J, Rahman MM. Toxicodynamics of lead, cadmium, mercury and arsenic- induced kidney toxicity and treatment strategy: A mini review. Toxicology Reports. 2018; 5:704–13.

[5] Khanipour AA, Ahmadi M, Seifzadeh M. Study on bioaccumulation of heavy metals (cadmium, nickel, zinc and lead) in the muscle of wels catfish (Silurus glanis) in the Anzali Wetland. Iran J Fish Sci. 2018;17(1):244–50.

[6] Maurya PK, Malik DS, Yadav KK, Kumar A, Kumar S, Kamyab H. Bioaccumulation and potential sources of heavy metal contamination in fish species in River Ganga basin: Possible human health risks evaluation. Toxicol Reports. 2019;6:472–81.

[7] Kong X, Liu T, Yu Z et al. Heavy Metal bioaccumulation in rice from a high geological background area in Guizhou Province, China. Int J Environ Res Public Health. 2018;15(10).

[8] I. DN, Odunze AC. Elemental contents of spinach and lettuce from irrigated gardens in Kano, Nigeria. Environ Pollut. 2016;5(1):73.

[9] Bati K, Mogobe O, Masamba WRL. Concentrations of some trace elements in vegetables sold at Maun market, Botswana. J Food Res. 2016;6(1):69.

[10] Derakhshan Z, Faramarzian M, Mahvi AH, Hosseini MS, Miri M. Assessment of heavy metals residue in edible vegetables distributed in Shiraz, Iran. J Food Qual Hazards Control. 2016;3(1):25–9.

[11] Schwarze M, Groß M, Moritz M, et al. Micellar enhanced ultrafiltration (MEUF) of metal cations with oleylethoxycarboxylate. J Memb Sci. 2015;478:140–7.

[12] Jokar M, Mirghaffari N, Soleimani M, Jabbari M. Preparation and characterization of novel bio ion exchanger from medicinal herb waste (chicory) for the removal of Pb2+ and Cd2+ from aqueous solutions. J Water Process Eng. 2019;28:88–99.

[13] Kończyk J, Żarska S, Ciesielski W. Adsorptive removal of Pb(II) ions from aqueous solutions by multi-walled carbon nanotubes functionalised by selenophosphoryl groups: Kinetic, mechanism, and thermodynamic studies. Colloids Surfaces A Physicochem Eng Asp. 2019;575:271–82.

[14] Taseidifar M, Makavipour F, Pashley RM, Rahman AFMFMM. Removal of heavy metal ions from water using ion flotation. Environ Technol Innov. 2017;8:182–90.

[15] Costa F, Tavares T. Biosorption of nickel and cadmium in the presence of diethylketone by a Streptococcus equisimilis biofilm supported on vermiculite. Int Biodeterior Biodegrad. 2016;115:119–32.

[16] He J, Li Y, Wang C et al. Rapid adsorption of Pb, Cu and Cd from aqueous solutions by β-cyclodextrin polymers. Appl Surf Sci. 2017;426:29–39.

[17] Mohamed E-SR, Ahmed MS, Tantawy AA, Gomaa NH, Mahmoud HA. Phytoremediation of Pb+2, Cd+2 and Cu+2 by an Aquatic Macrophyte Azolla pinnata from industrial wastewater in Egypt. Middle East J Appl Sci. 2016;6(1):27–39.

[18] Coelho GF, GonÇalves AC, Nóvoa-Muñoz JC et al. Competitive and non-competitive cadmium, copper and lead sorption/desorption on wheat straw affecting sustainability in vineyards. J Clean Prod. 2016;139:1496–503.

[19] Al-Ghouti MA, Li J, Salamh Y, Al-Laqtah N, Walker G, Ahmad MNM. Adsorption mechanisms of removing heavy metals and dyes from aqueous solution using date pits solid adsorbent. J Hazard Mater. 2010;176(1–3):510–20.

[20] Pino GH, De Mesquita LMS, Torem ML, Pinto GAS. Biosorption of heavy metals by powder of green coconut shell. Sep Sci Technol. 2006;41(14):3141–53.

[21] Hossain MA, Ngo HH, Guo WS, Nguyen TV, Vigneswaran S. Performance of cabbage and cauliflower wastes for heavy metals removal. Desalin Water Treat. 2014;52(4–6):844–60.

[22] Rashed MN. Fruit stones from industrial waste for the removal of lead ions from polluted water. Environ Monit Assess. 2006;119(1–3):31–41.

[23] Alomá I, Martín-Lara MA, Rodríguez IL, Blázquez G, Calero M. Removal of nickel (II) ions from aqueous solutions by biosorption on sugarcane bagasse. J Taiwan Inst Chem Eng. 2012;43(2):275–81.

[24] Soriano AN, Orfiana ON, Pangon MBJ, Nieva AD, Adornado AP. Simulated biosorption of Cd(II) and Cu(II) in single and binary metal systems by water hyacinth (Eichhornia crassipes) using aspen Adsorption®. ASEAN J Chem Eng. 2016;16(2):21–43.

[25] Farooq S, Ruthven DM. Heat effects in adsorption column dynamics. 2. Experimental validation of the one-dimensional model. Ind Eng Chem Res. 1990;29(6):1084–90.

[26] Sanchez N. Biosorción en Tanque agitado de Cd+2 y Pb+2 con cáscara de cacao [tesis de posgrado]. Cuenca: Universidad de Cuenca; 2016.

[27] Ministerio del Ambiente. Texto Unificado de Legislación Ambiental Secundaria. Norma de Calidad Ambiental y de descarga de efluentes: Recurso Agua, Libro 6, Anexo 1. Ecuador; 2015. Norma de calidad ambiental y de descarga de efluentes: Recurso Agua.

[28] Lara J, Tejada C, Villabona A, Arrieta A. Adsorción de plomo y cadmio en sistema continuo de lecho fijo sobre residuos de cacao. Rev Ion, Investig Optim y Nuevos procesos en Ing. 2017; 29(2):111–22.

[29] Meunier N, Laroulandie J, Blais JF, Tyagi RD. Cocoa shells for heavy metal removal from acidic solutions. Bioresour Technol. 2003;90(3):255–63.

[30] Persson I. Hydrated metal ions in aqueous solution: How regular are their structures? Pure Appl Chem. 2010;82(10):1901–17.

[31] Lin X, Huang Q, Qi G et al. Estimation of fixed-bed column parameters and mathematical modeling of breakthrough behaviors for adsorption of levulinic acid from aqueous solution using SY-01 resin. Sep Purif Technol. 2017;174:222.