Web-Based Information Search System Development Using a Semantic Network
Abstract
Finding information from a large collection of documents is a complicated task; therefore, we need a method called an information retrieval system. Several models that have been used in information retrieval systems include the Vector Space Model (VSM), DICE Similarity, Latent Semantic Indexing (LSI), Generalized Vector Space Model (GVSM), and semantic-based information retrieval systems. The purpose of this study was to develop a semantic network-based search system that will find information based on keywords and the semantic relationship of keywords provided by users. This cannot be done by most search systems that only work based on keyword matching or similarities. The Waterfall development model was used, which divides the development stages into five steps, namely: (1) requirements analysis and definition; (2) system and software design; (3) implementation and unit testing; (4) integration and system testing; and (5) operation and maintenance. The developed system/application was tested by trying to find information based on various combinations of keywords provided by the user. The results showed that the system can find information that matches the keyword, and other relevant information based on the semantic relationships of these keywords.
Keywords: information retrieval, search system, semantic network, web-based application
References
[1] Amin, F., & Purwatiningtyas. (2015). Rancang bangun Information Retrieval System (IRS) bahasa Jawa ngoko pada palintangan penjebar semangad dengan metode Vector Space Model (VSM). Dinamik, 20(1).
[2] Ridwan, R., & Hermawan, T. A. (2019). Penerapan mesin pencari informasi dengan menggunakan metode Vector Space Model. Jurnal Teknik Informatika, 7(2).
[3] Amin, F., Purwatiningtyas, P., & Winarno, E. (2016). Rancang bangun sistem temu kembali informasi (Information Retrieval System) dokumen berbahasa Jawa menggunakan metode DICE similarity. Dinamik, 21(2), 99–106.
[4] Pertiwi, M. W., & Taufiqurrahman, T. (2017). Sistem temu-kembali informasi dalam dokumen (pencarian 10 kata kunci di ejournal BSI) [Conference paper]. Seminar Nasional Sains dan Teknologi (SEMNASTEK), Universitas Muhammadiyah Jakarta, Indonesia. https://jurnal.umj.ac.id/index.php/semnastek/article/ view/2058
[5] Suprianto, S., Fadlil, A., & Sunardi, S. (2019). Aplikasi sistem temu kembali angket mahasiswa menggunakan metode Generalized Vector Space Model. Jurnal Teknologi Informasi dan Ilmu Komputer, 6(1), 33–40. doi: 10.25126/jtiik.2019611184
[6] Admojo, F. T., & Winarko, E. (2017). Sistem pencarian informasi berbasis ontologi untuk jalur pendakian gunung menggunakan query bahasa alami dengan penyajian peta interaktif. Indonesian Journal of Computing and Cybernetics Systems, 10(1), 23–34. doi: 10.22146/ijccs.11186
[7] Novianti, K. D. P., & Diaz, R. A. N. (2017). Sistem pencarian program studi pada perguruan tinggi di Bali berbasis semantik. Jurnal Sains dan Teknologi, 6(1), 93-104. doi: 10.23887/jst-undiksha.v6i1.9111
[8] Selvalakshmi, B., & Subramaniam, M. (2019). Intelligent ontology based semantic information retrieval using feature selection and classification. Cluster Computing Journal, 22(5), 12871–12881. doi: 10.1007/s10586-018-1789-8
[9] Risparyanto, A. (2012). Model–model temu kembali informasi (information retrieval). UNILIB: Jurnal Perpustakaan, 3(1), 49–87.
[10] Casterella, G. I., & Vijayasarathy, L. (2019). Query structure and data model mapping errors in information retrieval tasks. Journal of Information Systems Education, 30(3), 178.
[11] Rus, A. M. M., & Othman, Z. A. (2019). ONTODB: Aplikasi untuk transformasi ontologi OWL ke basis data relasi SQL. Journal of Data Analysis, 2(1), 1–16. doi: 10.24815/jda.v2i1.13094
[12] Hastono, T. (2019). Optimasi query sistem informasi menggunakan stored procedure. Jurnal Dinamika Informatika, 8(2), 79–89.
[13] Danenberg, S. A. (1998). Semantic network designs for courseware. Lawrence Erlbaum Associates Publishers.
[14] Sung, Y. Y., & Kim, S. B. (2020). Topical keyphrase extraction with hierarchical semantic networks. Decision Support Systems, 128, 113163. doi: 10.1016/j.dss.2019.113163
[15] Sommerville, I. (2011). Software Engineering (9th ed.). Addison-Wesley.