Hemicellulose Extraction and Characterization of Rice Straw and Leucaena Leucocephala


Local production of agricultural waste is increasing. It is not fully  utilized  and  can cause an environmental issue if it is not handle wisely. Thus, it is important to increase utilization of lignocellulosic biomass by improving their added value and subsequently decrease the agriculture waste. In this study, rice straw and Leucaena leucocephala were subjected to alkali treatment (4% sodium hydroxide) with different concentration ratio of samples to sodium hydroxide (1:10 to 1:50). The physical and chemical properties of extracted hemicelluloses were studied. The yield of hemicellulose was higher from rice straw compared to Leucaena leucocephala. The chemical functional groups present in hemicellulose were confirmed by Fourier tranform infrared spectroscopy (FTIR). The surface morphology and roughness of xylan were examined by scanning electron microscopy (SEM).

Keywords: rice straw, hemicellulose, sodium hydroxide, alkali

[1] Akinfemi, A. and Ogunwole, O. (2012). Chemical Composition and in Vitro Digestibility of Rice Straw Treated with Pleurotus Ostreatus, Pleurotus Pulmonarius and Pleurotus Tuber-Regium. vol. 1, pp. 14–20.

[2] Cabrera, E., et al. (2014). Alkaline and Alkaline Peroxide Pretreatments at Mild Temperature to Enhance Enzymatic Hydrolysis of Rice Hulls and Straw. Bioresource Technology, vol. 167, pp.1–7. doi:10.1016/j.biortech.2014.05.103.

[3] Chimphango, A., van Zyl, W.H. and Görgens, J. (2012). Isolation, Characterization and Enzymatic Modification of Water Soluble Xylans from Eucalyptus Grandis Wood and Sugarcane Bagasse Journal of Chemical Technology and Biotechnology, vol. 87, issue 10, pp. 1419–29. doi:10.1002/jctb.3761.

[4] Feria, M. J., et al. (2011). Valorization of Leucaena Leucocephala for Energy and Chemicals from Auto- hydrolysis. Biomass and Bioenergy vol. 35, issue 5, pp. 2224–33. doi:10.1016/j.biombioe.2011.02.038.

[5] Feria, M.J., et al. (2012). Integral Valorization of Leucaena Diversifolia by Hydrothermal and Pulp Processing. Bioresource Technology, vol. 103, pp. 381–88. doi:10.1016/j.biortech.2011.09.100.

[6] Froschauer, C., et al. (2013). Separation of Hemicellulose and Cellulose from Wood Pulp by Means of Ionic Liquid/cosolvent Systems. Biomacromolecule, vol. 14, issue 6, pp. 1741–50. doi:10.1021/bm400106h.

[7] Hassan, O., et al. (2013). Optimization of Pretreatments for the Hydrolysis of Oil Palm Empty Fruit Bunch Fiber (EFBF) Using Enzyme Mixtures. Biomass and Bioenergy, vol. 56, pp.137–46. doi:10.1016/j.biombioe.2013.04.021.

[8] Hsu, T.A., Ladisch, M.R. and Tsao, G.T. (1980). Alcohol from Cellulose. Chemical Technology, vol. 10, issue 5, pp. 315–319.

[9] Karimi, K., Shauker K. and Mohammad J. (2006). Conversion of Rice Straw to Sugars by Dilute-Acid Hydrolysis. Biomass and Bioenergy, vol. 30, issue 3, pp. 247–53. doi:10.1016/j.biombioe.2005.11.015.

[10] Moradi, F., et al. (2013). Improvement of Acetone, Butanol and Ethanol Production from Rice Straw by Acid and Alkaline Pretreatments. Fuel, vol. 112, pp. 8–13. doi:10.1016/j.fuel.2013.05.011.

[11] Panthapulakkal, S., Pakharenko, V. and Sain, M. (2013). Microwave Assisted Short-Time Alkaline Extraction of Birch Xylan. Journal of Polymers and the Environment, vol. 21, issue 4, pp. 917–29. doi:10.1007/s10924-013-0591-1.

[12] Park, J. et al. (2010). A Novel Lime Pretreatment for Subsequent Bioethanol Production from Rice Straw - Calcium Capturing by Carbonation (CaCCO) Process. Bioresource Technology, vol. 101, issue 17, pp.6805–11. doi:10.1016/j.biortech.2010.03.098.

[13] Rabetafika, H.N., et al. (2014). Comparative Study of Alkaline Extraction Process of Hemicelluloses from Pear Pomace. Biomass and Bioenergy, vol. 6, pp. 254–64. doi:10.1016/j.biombioe.2013.12.022.

[14] Ranjan, A., Swati K. and Moholkar, V. S. (2013). Feasibility of Rice Straw as Alternate Substrate for Biobutanol Production. Applied Energy, vol. 103, pp. 32–38. doi:10.1016/j.apenergy.2012.10.035.

[15] Said, N., Bishara, T., García-Maraver, A. and M. Zamorano. 2013. Effect of Water Washing on the Thermal Behavior of Rice Straw. Waste Management, vol. 33, issue 11, pp. 2250–56. doi:10.1016/j.wasman.2013.07.019.

[16] Shetty, D. J., et al. (2017). Alkali Pretreatment at Ambient Temperature: A Promising Method to Enhance Biomethanation of Rice Straw. Bioresource Technology, vol. 226, pp. 80–88. doi:10.1016/j.biortech.2016.12.003.

[17] Sreekala, M. S., Kumaran, M. G. and Thomas, S. (1997). Oil Palm Fibers: Morphology, Chemical Composition, Surface Modification, and Mechanical Properties. Journal of Applied Polymer Science, vol. 66, issue 5, pp. 821–35. doi:10.1002/(SICI)1097-4628(19971031)66:5<821::AID-APP2>3.0.CO;2-X.

[18] Sun, R. C., and Sun, X. F. (2002). Fractional and Structural Characterization of Hemicelluloses Isolated by Alkali and Alkaline Peroxide from Barley Straw. Carbohydrate Polymers, vol. 49, issue 4, pp. 415–23. doi:10.1016/S0144-8617(01)00349-6.

[19] Sun, S.L., et al. (2013). Successive Alkali Extraction and Structural Characterization of Hemi-celluloses from Sweet Sorghum Stem. Carbohydrate Polymers, vol. 92, issue 2, pp. 2224–31. doi:10.1016/j.carbpol.2012.11.098.

[20] Sun, Y.C., Wen, J.L., Xu F., and Sun, R. C. (2011). Organosolv- and Alkali-Soluble Hemicelluloses Degraded from Tamarix Austromongolica: Characterization of Physicochemical, Structural Features and Thermal Stability. Polymer Degradation and Stability, vol. 96, issue 8, pp. 1478–88. doi:10.1016/j.polymdegradstab.2011.05.007.

[21] Zafar, S. (2015). Agricultural Biomass in Malaysia. Retrieved from www.bioenergyconsult.com.