Increased Load Power With Centralized Control of Multiple Microgrid Resources
DOI:
https://doi.org/10.18502/kss.v9i6.15284Abstract
There are many rural areas on remote islands that cannot be reached by electricity sources from the utility grid. However, Indonesia is a country that has an abundant supply of renewable energy. One of the renewable energies that is obtained for free is solar energy sources. Renewable energy has great potential as a source of distributed electricity generation or microgrids. This article proposes a new method for providing large electrical power supplies for rural areas, namely multiple microgrids with a centralized control strategy. The purpose of this method is to provide stability of power supply to the load. In this method, each microgrid has solar panels (SP), batteries, and diesel generators (GD). Multiple microgrids provide power supply to DC loads and AC loads. The centralized controller uses an outseal programmable logic controller (PLC) which functions to regulate the power flow of microgrid 1 (MG1), microgrid 2 (MG2), and microgrid 3 (MG3) to the load alternately. Simulation test results show the performance of a centralized control which is able to provide power supply to the load according to demand or changes in load. Power regulation management for rural areas can be developed for large-scale microgrid systems.
Keywords: multiple-microgrid; centralized control; solar panel
References
Yan H, Lv N, Zhuo F, Yi H, Wang Z. “Energy Management of Household Microgrid with Multiple Energy Resources for Rural Area,” ICPE 2019 - ECCE Asia - 10th Int. Conf. Power Electron. - ECCE Asia, vol. 3, 2019, https://doi.org/10.23919/ICPE2019- ECCEAsia42246.2019.8797267. DOI: https://doi.org/10.23919/ICPE2019-ECCEAsia42246.2019.8797267
Guan Y, Wei B, Guerrero JM, Vasquez JC, Gui Y. “An overview of the operation architectures and energy management system for multiple microgrid clusters,” iEnergy, vol. 1, no. 3, pp. 306–314, 2022, https://doi.org/10.23919/IEN.2022.0035. DOI: https://doi.org/10.23919/IEN.2022.0035
Wu G, Ishida S, Yin H. “DC Voltage Stabilization in DC/AC Hybrid Microgrid by Cooperative Control of Multiple Energy Storages,” pp. 1–5, 2020, https://doi.org/10.1109/ICDCM45535.2019.9232764. DOI: https://doi.org/10.1109/ICDCM45535.2019.9232764
Peyghami S, Mokhtari H, Blaabjerg F. Autonomous operation of a hybrid AC/DC microgrid with multiple interlinking converters. IEEE Trans Smart Grid. 2018;9(6):6480–8. DOI: https://doi.org/10.1109/TSG.2017.2713941
Xia Y, Wei W, Yu M, Wang X, Peng Y. Power Management for a Hybrid AC/DC Microgrid with Multiple Subgrids. IEEE Trans Power Electron. 2018;33(4):3520–33. DOI: https://doi.org/10.1109/TPEL.2017.2705133
Li F, Qin J, Wan Y, Yang T. Decentralized Cooperative Optimal Power Flow of Multiple Interconnected Microgrids via Negotiation. IEEE Trans Smart Grid. 2020;11(5):3827– 36. DOI: https://doi.org/10.1109/TSG.2020.2989929
Zhao Z, Yang P, Wang Y, Xu Z, Guerrero JM. Dynamic Characteristics Analysis and Stabilization of PV-Based Multiple Microgrid Clusters. IEEE Trans Smart Grid. 2019;10(1):805–18. DOI: https://doi.org/10.1109/TSG.2017.2752640
Lu X, Lai J, Yu X. A Novel Secondary Power Management Strategy for Multiple AC Microgrids with Cluster-Oriented Two-Layer Cooperative Framework. IEEE TransIndustr Inform. 2021;17(2):1483–95. DOI: https://doi.org/10.1109/TII.2020.2985905
Meng L, Shafiee Q, Ferrari Trecate G, Karimi H, Fulwani D, Lu X, et al. Review on Control of DC Microgrids and Multiple Microgrid Clusters. IEEE J Emerg Sel Top Power Electron. 2017;5(3):928–48. DOI: https://doi.org/10.1109/JESTPE.2017.2690219
Yuen C, Oudalov A, Timbus A. The provision of frequency control reserves from multiple microgrids. IEEE Trans Ind Electron. 2011;58(1):173–83. DOI: https://doi.org/10.1109/TIE.2010.2041139
Zhou J, Shi M, Chen Y, Chen X, Wen J, He H. A Novel Secondary Optimal Control for Multiple Battery Energy Storages in a DC Microgrid. IEEE Trans Smart Grid. 2020;11(5):3716–25. DOI: https://doi.org/10.1109/TSG.2020.2979983
Hou N, Li Y. Communication-Free Power Management Strategy for the Multiple DABBased Energy Storage System in Islanded DC Microgrid. IEEE Trans Power Electron. 2021;36(4):4828–38. DOI: https://doi.org/10.1109/TPEL.2020.3019761
Naveen P, Jena P. Adaptive Protection Scheme for Microgrid with Multiple Point of Common Couplings. IEEE Syst J. 2021;15(4):5618–29. DOI: https://doi.org/10.1109/JSYST.2020.3039881
Lai J, Lu X, Yu X, Monti A. Cluster-Oriented Distributed Cooperative Control for Multiple AC Microgrids. IEEE Trans Industr Inform. 2019;15(11):5906–18. DOI: https://doi.org/10.1109/TII.2019.2908666
Jia L, Zhu Y, Du S, Wang Y. Analysis of the transition between multiple operational modes for hybrid AC/DC microgrids. CSEE J. Power Energy Syst. 2018;4(1):49–57. DOI: https://doi.org/10.17775/CSEEJPES.2016.01030
Mahmood H, Jiang J. Decentralized power management of multiple PV, battery, and droop units in an islanded microgrid. IEEE Trans Smart Grid. 2019;10(2):1898–906. DOI: https://doi.org/10.1109/TSG.2017.2781468
Fu L, Liu B, Meng K, Dong ZY. Optimal Restoration of an Unbalanced Distribution System into Multiple Microgrids Considering Three-Phase Demand-Side Management. IEEE Trans Power Syst. 2021;36(2):1350–61. DOI: https://doi.org/10.1109/TPWRS.2020.3015384
Cao W, Ma Y, Wang F, Tolbert LM, Xue Y. Low-Frequency Stability Analysis of Inverter- Based Islanded Multiple-Bus AC Microgrids Based on Terminal Characteristics. IEEE Trans Smart Grid. 2020;11(5):3662–76. DOI: https://doi.org/10.1109/TSG.2020.2978250
Guo Y, Lu X, Chen L, Zheng T, Wang J, Mei S. Functional-Rotation-Based Active Dampers in AC Microgrids with Multiple Parallel Interface Inverters. IEEE Trans Ind Appl. 2018;54(5):5206–15. DOI: https://doi.org/10.1109/TIA.2018.2838058
Kusmantoro A, Priyadi A, Budiharto Putri VL, Hery Purnomo M. Coordinated Control of Battery Energy Storage System Based on Fuzzy Logic for Microgrid with Modified AC Coupling Configuration. Int. J. Intell. Eng. Syst. 2021;14(2):495–510. DOI: https://doi.org/10.22266/ijies2021.0430.45
Kusmantoro A, Priyadi A, Purnomo MH. “Voltage stability in DC micro grid by controlling two battery units with hybrid network systems,” 2018 5th Int. Conf. Ind. Eng. Appl. ICIEA 2018, pp. 163–168, 2018, https://doi.org/10.1109/IEA.2018.8387089. DOI: https://doi.org/10.1109/IEA.2018.8387089
Kusmantoro A, Purnomo MH, Priyadi A, Budiharto Putri VL. “Fuzzy-PID Controller on MPPT PV to Stabilize DC Bus Voltage,” 2019 Int. Conf. Technol. Policies Electr. Power Energy, TPEPE 2019, pp. 10–15, 2019 DOI: https://doi.org/10.1109/IEEECONF48524.2019.9102618
Kusmantoro A, Farikhah I. “Improvement the Capacity of Electrical Energy in Residential Using PV with On-Grid System,” E3S Web Conf., vol. 359, pp. 1–12, 2022, https://doi.org/10.1051/e3sconf/202235901004. DOI: https://doi.org/10.1051/e3sconf/202235901004
Kusmantoro A. “Enhancement DC Microgrid Power Stability With a Centralized”. 2022 Int. Conf. on Vocational Educ.and Electr. Eng., ICVEE 2022, pp. 10–15, 2022 https://doi.org/10.1109/ICVEE57061.2022.9930460. DOI: https://doi.org/10.1109/ICVEE57061.2022.9930460