The Growth and Antioxidative Responses of Sonchus oleraceus (Linnaeus, 1753) Under Cu(II), Pb(II), Cd(II) and Cr(VI) Stress Condition

Abstract

Plants growing in soil containing heavy metal  polutan such as chromium (Cr), lead (Pb), cadmium (Cd) and copper (Cu)  will be stunted, and  increase production of Reactive Oxygen Species (ROS). In dealing with the excess amount of ROS, plants have an enzymatic defense system, using superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxide (APX). The aim of this study was to determine and analyze the Sonchus oleraceus (Linnaeus, 1753) plant response to heavy metals stress, seen from the growth and antioxidative defense enzymatically. Research carried out using a Completely Randomized Design (CRD) with four treatments and five replicates. The metal treatment was 10 mg · L–1. The presence of heavy metals in the growing medium significantly decreased the plant height and leaf area, so the impact is on the weight of wet and dry weight. The metal treatments of Cr, Cd, Pb and Cu increase the activity of SOD and APX enzymes but decrease the activity of the CAT enzyme. Chromium is a metal that has a significant influence on the growth and activity of SOD, APX, and CAT enzymes in S. oleraceus.

Keywords: antioxidative responses; growth; heavy metal; Sonchus oleraceus; toxicity.

References
[1] J. Mukono and IP. Corie, “Toksikologi logam berat B3 dan dampaknya terhadap kesehatan [Toxicology B3 heavy metals and their impact on health],” J. Kesehatan Lingkungan, vol. 2, p. 129, 2006, in Bahasa Indoenesia.

[2] Darmono., “Logam dalam sistem biologi makhluk hidup [Metals in biological systems beings],” in Logam dalam sistem biologi makhluk hidup [Metals in biological systems beings], pp. 125–126, UI Press, Jakarta, 1995, in Bahasa Indoenesia.

[3] F. Rokhmah, “Rokhmah F. Pengaruh toksisitas Cu terhadap pertumbuhan dan produksi padi (OryzasativaL.) serta upaya perbaikannya dengan pupuk penawar racun [Effect of Cu toxicity on the growth and production of rice (OryzasativaL.) as well as improvement efforts by the bidder fertilizer poison] [undergratuaded
Thesis]. Bogor: Institut Pertanian Bogor; 2008,p. 31–55 [in Bahasa Indoenesia].”.

[4] F. Hamzah, “Setiawan A. Akumulasi logam berat Pb, Cu, dan Zn di hutan mangrove Muara Angke, Jakarta Utara [Accumulation of heavy metals Pb, Cu, and Zn in Mangrove Forest Muara Angke, North Jakarta]. Jurnal Ilmu dan Teknologi Kelautan Tropis 2010; 2 (2):41–52 [in Bahasa Indoenesia]”.

[5] C. Jonak, H. Nakagami, and H. Hirt, “Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium.,” Plant physiology, vol. 136, no. 2, pp. 3276–3283, 2004.

[6] Rini. S. Kusdianti and Eva. T. Hafsah, “Analisis pertumbuhan tanaman kentang (SolanumtuberosumL.) pada tanah yang terakumulasi logam berat Cadmium (Cd) [Growth analysis of potato (SolanumtuberosumL.) on soil accumulated heavy metal Cadmium (Cd)]. Garut: STKIP; 2014, p.1–7 [in Bahasa Indoenesia].”.

[7] I. Pratiwi, “Respon antioksidatif tanaman sorgun (Sorghum bicolor(L.) Moench) pada cekaman logam berat Cr (III) dan Cr (VI) [Plant antioxidative response Sorghum (Sorghum bicolor(L.) Moench) on heavy metals stress Cr (III) and Cr (VI)] [Undergratuaded Thesis]. Salatiga: Fakultas Biologi Universitas Kristen Satya
Wacana; 2014,p.1–24 [in Bahasa Indoenesia].”.

[8] D. Purwandani, “Pertumbuhan, kandungan klorofil, dan aktivitas nitrat reduktaseSorghum bicolor(L.) Moench pada kondisi cekaman krom [Growth, chlorophyll content and nitrate reductase activity Sorghum bicolor (L.) Moench on condition Stress Krom] [Undergratuaded Thesis]. Salatiga: Fakultas Biologi Universitas Kristen
Satya Wacana; 2014,p.1–19 [in Bahasa Indoenesia].”.

[9] X. Yang, Y. Feng, Z. He, and P. J. Stoffella, “Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation,” Journal of Trace Elements in Medicine and Biology, vol. 18, no. 4, pp. 339–353, 2005.

[10] D. Sharma, C. Chatterjee, and C. Sharma, “Chromium accumulation and its effects on wheat (Triticum aestivum L. cv. HD 2204) metabolism,” Plant Science, vol. 111, no. 2, pp. 145–151, 1995.

[11] V. Pandey, V. Dixit, and R. Shyam, “Chromium (VI) induced changes in growth and root plasma membrane redox activities in pea plants,” Protoplasma, vol. 235, no.1-4, pp. 49–55, 2009.

[12] AK. Singh, “Effect of trivalent and hexavalent chromium on spinach (SpinaceaoleraceaL),” Environ. Ecol, vol. 19, pp. 807–810, 2001.

[13] Z. Zaimoglu, N. Koksal, N. Basci, M. Kesici, H. Gulen, and F. Budak, “Antioxidative enzyme activities in Brassica juncea L. and Brassica oleracea L. plants under chromium stress,” Journal of Food, Agriculture and Environment, vol. 9, no. 1, pp. 676– 679, 2011.

[14] X. Liu, C. E. Williams, J. A. Nemacheck et al., “Reactive oxygen species are involved in plant defense against a gall midge,” Plant Physiology, vol. 152, no. 2, pp. 985–999, 2010.

[15] M. Heidari, “Antioxidant activity and osmolyte concentration of sorghum (Sorghum bicolor) and wheat (Triticum aestivum) genotypes under salinity stress,” Asian Journal of Plant Sciences, vol. 8, no. 3, pp. 240–244, 2009.

[16] P. Ahmad, CA. Jaleel, MM. Azooz, and G. Nabi, “Generations of ROS and nonenzymatic antioxidants during abiotic stress in plants,” Botany research International, vol. 2, pp. 11–20, 2009.

[17] K. Apel and H. Hirt, “Reactive oxygen species: Metabolism, oxidative stress, and signal transduction,” Annual Review of Plant Biology, vol. 55, pp. 373–399, 2004.

[18] X. He, Y. Ruan, W. Chen, and T. Lu, “Responses of the anti-oxidative system in leaves of Ginkgo biloba to elevated ozone concentration in an urban area,” Botanical Studies, vol. 47, no. 4, pp. 409–416, 2006.

[19] SM. Sitompul and B. Guritno, “Sitompul SM, Guritno B. Analisa pertumbuhan tanaman [Plant growth anatomy]. Yogyakarta: Universitas Gadjah Mada Press; 1995, p.376 [in Bahasa Indoenesia].”.

[20] R. Sunkar, Plant Stress Tolerance (Methods and Protocol, Humana Press, 2010.

[21] A. Manara, “Plant Responses to Heavy Metal Toxicity,” in Plants and Heavy Metals, vol. of SpringerBriefs in Molecular Science, pp. 27–53, Springer Netherlands, Dordrecht, 2012.

[22] S. Malaar, S. Sahi, JC. Paulo, and P. Venkatachalam, “Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)],” Botanical studies, pp. 55–54, 2014.

[23] R. K. Tewari, P. Kumar, P. N. Sharma, and S. S. Bisht, “Modulation of oxidative stress responsive enzymes by excess cobalt,” Plant Science, vol. 162, no. 3, pp. 381–388, 2002.

[24] A. Metwally, V. I. Safronova, A. A. Belimov, and K.-J. Dietz, “Genotypic variation of the response to cadmium toxicity in Pisum sativum L.,” Journal of Experimental Botany, vol. 56, no. 409, pp. 167–178, 2005.

[25] FB. Salisbury and CW. Ross, “Fisiologi tumbuhan [Plant physiology]. Jilid 1 Terjemahan Diah R. Lukman dan Sumaryo,” in Ross CW. Fisiologi tumbuhan [Plant physiology]. Jilid 1 Terjemahan Diah R. Lukman dan Sumaryo, p. 241, ITB Press, Bandung, 1995, in Bahasa Indoenesia.

[26] A. K. Shanker, C. Cervantes, H. Loza-Tavera, and S. Avudainayagam, “Chromium toxicity in plants,” Environment International, vol. 31, no. 5, pp. 739–753, 2005.

[27] Y. Kono and I. Fridovich, “Superoxide radical inhibits catalase.,” Journal of Biological
Chemistry, vol. 257, no. 10, pp. 5751–5754, 1982.