The Dynamics of Antibiotic Activity of nemertine Tissues and Its Significance in the System of Protective Mechanisms of the Organism

Abstract

Obviously, nemertean tissues normally have antibiotic properties, intensifyed by injury and in contact with bacteria. The highest antibiotic activity was found in mature nemertines, especially in females during the reproductive season. During winter, the antibiotic activity of tissue of the females in the damage focus is significantly reduced compared with the antibiotic activity of tissues during the reproductive period. In males, seasonal fluctuations of the antibiotic activity are negligible.Therefore, the antibiotic activity of the tissue regularly increases in the area of the wound track not only due to bacterial infection or the introduction of a foreign body, ensuring tissue sterility and preventing, thus, the development of necrosis, but also due to the physiological state of animals, particularly those related to reproductive cycles.

References
[1] Ali, A.E., Arakawa, O., Noguchi, T., Miyazawa, K., Shida, Y., Hashimoto, K. (1990). Tetrodotoxin and related substances in a ribbon worm Cephalothrix linearis (Nemertean). Toxicon, vol 28., pp. 1083–1093.

[2] Asakawa, M., Toyoshima, T., Shida, Y., Noguchi, T., Miyazawa, K. (2000). Paralytic toxins in a ribbon worm Cephalothrix species (Nemertean) adherent to cultured oysters in Hiroshima Bay, Hiroshima Prefecture, Japan. Toxicon, vol. 38, pp. 763–773.

[3] Asakawa, M., Ito, K., Kajihara, H. (2013). Highly toxic ribbon worm Cephalothrix simula containing tetrodotoxin in Hiroshima Bay, Hiroshima Prefecture, Japan. Toxins, vol. 5, pp. 376–395.

[4] Bang, F. B. (1967). Serological responses among invertebrates other than insects.Federat. Proc., vol. 26, no. 6, pp. 1680–1684.

[5] Beckers, P., Bartolomaeus, T., von Döhren, J. (2015). Observations and experiments on the biology and life history of Riseriellus occultus (Heteronemertea: Lineidae) Zool. Sci., vol. 32, pp. 531–546.

[6] Beleneva, I., Magarlamov, T.Y., Kukhlevsky, A. (2014). Characterization, identification, and screening for tetrodotoxin production by bacteria associated with the ribbon worm (Nemertea) Cephalotrix simula (Ivata, 1952) Microbiology, vol. 83, pp. 220–226.

[7] Blunt, J.W., Copp, B.R., Keyzers, R.A., Munro, M.H.G., Prinsep, M.R. (2014). Marine natural products. Nat. Prod. Rep. vol. 31, no. 2, pp. 160–258.

[8] Butala, M., Sega, D., Tomc, B., Podlesek, Z., Kem, W.R., Kupper, F.C., Turk, T. (2015). Recombinant expression and predicted structure of parborlysin, a cytolytic protein from the Antarctic heteronemertine Parborlasia corrugatus. Toxicon, vol. 108, pp. 32–37.

[9] Hemalatha, K., Madhumitha, G., Roopan, S. M. (2013). Indole as a core anti-inflammatory agent- a mini review. Chem. Sci. Rev. Lett., vol. 2, pp. 287–292.

[10] Cooper, E.L. (1968). Transplantation immunity in annelids. 1. Reactions of xenografts exchanged between Lumbricusterrestris and Eiseniafoetida. Transplantation, vol. 6, pp. 322–337.

[11] Cushing, J. E., Neely, J. L (1969). Comparative immunology of sipunculidcoelomic. Journal. Invertebrate Pathology, vol. 14, pp. 4–12.

[12] Jacobsson, E., Andersson, H.S., Strand, M., Peigneur, S., Eriksson, C., Lodén, H., Shariatgorji, M., Andren, P.E., Lebbe, E., Rosengren, K.J., Tytgat, J., Göransson, U. (2018). Peptide ion channel toxins from the bootlace worm, the longest animal on Earth. Sci. Rep, vol. 8, p. 4596.

[13] Kajihara, H., Sun, S.C., Chernyshev, A.V., Chen, H.X., Ito, K., Asakawa, M., Maslakova, S.A., Norenburg, J.L., Strand, M., Sundberg, P., et al. (2013). Taxonomic identity of a tetrodotoxin-accumulating ribbonworm Cephalothrix simula (Nemertea: Palaeonemertea): A species artificially introduced from the Pacific to Europe. Zool. Sci., vol. 30, pp. 985–997.

[14] Kem, W.R. (2001). Nemertine Neurotoxins. In: Neurotoxicology Handbook: Natural Toxins of Animal. Humana Press: Totowa, NJ; pp 573–594.

[15] Kem, W. R. (1958). Structure and activity of Nemertine Toxins. Integr. Comp. Biol., vol. 25, pp. 99–111.

[16] Kem, W., Soti, F., Wildeboer, K., LeFrancois, S., MacDougall, K., Wei, D.-Q., Chou, K.-C., Arias, H.R. (2006). The nemertine toxin anabaseine and its derivative DMXBA (GTS-21): Chemical and pharmacological properties. Mar. Drugs, vol. 4, pp. 255–273.

[17] Kitajima, M., Takayama, H. (2016). Monoterpenoid bisindole alkaloids. The Alkaloids: Chemistry and Biology, vol. 76, pp. 259–310.

[18] Kwon, Y.S., Min, S.K., Yeon, S.J., Hwang, J.H., Hong, J., Shin, H.S. (2017). Assessment of neuronal cellbased cytotoxicity of neurotoxins from an estuarine nemertean in the Han River Estuary. J. Microbiol. Biotechnol., vol. 27, pp. 725–730.

[19] Lalit, K., Shashi, B., Kamal, J. (2012). The diverse pharmacological importance of indole derivatives: a review. Int. J. Res. Pharm. Sci. vol. 2, pp. 23–33.

[20] Magarlamov, T.Y., Beleneva, I.A., Chernyshev, A.V., Kuhlevsky, A.D. (2014). Tetrodotoxinproducing Bacillus sp. from the ribbon worm (Nemertea) Cephalothrix simula (Iwata, 1952). Toxicon, vol. 85, pp. 46–51.

[21] Magarlamov, T.Y., Shokur, O.A., Chernyshev, A.V. (2016). Distribution of tetrodotoxin in the ribbon worm Lineus alborostratus (Takakura, 1898)(Nemertea): Immunoelectron and immunofluorescence studies. Toxicon, vol. 112, pp. 29–34.

[22] Miyazawa, K., Higashiyama, M., Ito, K., Noguchi, T., Arakawa, O., Shida, Y., Hashimoto, K. (1988). Tetrodotoxin in two species of ribbon worm (Nemertini), Lineus fuscoviridis and Tubulanus punctatus. Toxicon, vol. 26, pp. 867–874.

[23] Netz, N., Opatz, T. (2015). Marine indole alkaloids. Mar. Drugs, vol. 13, pp. 4814–4914.

[24] Ponomarenko, L.P., Makarieva, T.N., Stonik, V.A., Dmitrenok, A.S., Dmitrenok, P.S. (1995). Sterol composition of Linneus torquatus (Nemertini) Anopla Comp. Biochem. Physiol. vol. 11, no. 4, p. 575–577.

[25] Rangel, M., Falkenberg, M. (2015). An overview of the marine natural products in clinical trials and on the market. J. Coast. Life Med., vol. 3, pp. 421–428.

[26] Rubiolo, J.A., Ternon, E., Lopez-Alonso, H., Thomas, O.P., Vega, F.V., Vieytes, M.R., Botana, L.M. (2013). Crambescidin-816 acts as a fungicidal with more potency than crambescidin-800 and -830, inducing cell cycle arrest, increased cell size and apoptosis in Saccharomyces cerevisiae II Mar. Drugs. vol. 11, no. 11, pp. 4419–4434.

[27] Rubiolo, J.A., Lopez-Alonso, H., Roel, M., Vieytes, M.R., Thomas, O., Ternon, E., Vega, F.V., Botana, L. M. (2014). Mechanism of cytotoxic action of crambescidin-816 on human liver-derived tumour cells. Br. J. Pharmacol. vol. 171, no. 7, pp. 1668–1675.

[28] Strand, M., Hedström, M., Seth, H., McEvoy, E.G., Jacobsson, E., Goransson, U., Andersson, H.S., Sundberg, P. (2016). The bacterial (Vibrio alginolyticus) production of tetrodotoxin in the ribbon worm Lineus longissimus—Just a false positive? Mar. Drugs. vol. 14, p. 63.

[29] Turner, A., Fenwick, D., Powell, A., Dhanji-Rapkova, M., Ford, C., Hatfield, R., Santos, A., Martinez-Urtaza, J., Bean, T., Baker-Austin, C. (2018). New Invasive Nemertean Species (Cephalothrix simula) in England with high levels of tetrodotoxin and a microbiome linked to toxin metabolism. Mar. Drugs, vol. 16, p. 452.

[30] Vlasenko, A., Velansky, P., Chernyshev, A., Kuznetsov, V., Magarlamov, T.Y. (2018). Tetrodotoxin and its analogues profile in nemertean species from the Sea of Japan. Toxicon, vol. 156, pp. 48–51.

[31] Voogt, P.A. (1973). Biosynthesis and composition sterols in nemertean Cerebratus marginatus. Arch. Int. Physiol. Biochem., vol. 81, pp. 871–880.