Antioxidant System Response of Freshwater Mussel Anodontacygnea to Cadmium Exposure


Cadmium is one of the widespread toxic substances being hazardous for man as it capable to enter from the environment into animal and plant tissues and spreading along the food chain. We have studied the effect of Cd on the gills and hepatopancreas of the fresh water bivalve mollusks Anodontacygnea. After 12-day acclimation the mollusks were kept for 24 and 72 hours in aquariums with Cd2+ concentrations of 10, 50 and 100 μg/L. Mass-spectrometric analysis has shown that Cd accumulation rate increased with increasing metal concentration in the water. At cadmium concentration of 100 μg/L the mollusk was capable of accumulating up to 0.44 μg of Cd per day. The accumulation of such high metal concentrations in the mollusk tissues did not kill the animals, but signs of oxidative stress, more pronounced in the gills than in the digestive gland, were observed. Exposure to cadmium ions decreased GSH concentration and increase Рx activity in the mollusk gills as early as 24 hours after the beginning of the experiment. Changing the water in the aquarium had a considerable influence on SOD activity in the gills comparable with the effect of the addition of Cd.

[1] Benavides, M.P., Gallego, S.M., Tomaro, M.L. (2005). Cadmium toxicity in plants Braz. J. Plant Physiol., vol. 17, No 1, pp. 21–34. doi: 10.1590/S1677-04202005000100003

[2] Bigot, A., Minguez, L., Giamberini, L., Rodius, F. (2011). Early defense responses in the freshwater bivalve Corbiculafluminea exposed to copper and cadmium: transcriptional and his to chemical studies. Environ. Toxicol., vol. 26, pp. 623–632. doi: 10.1002/tox.20599

[3] Choi, C.Y., An, K.W., Nelson, E.R., Habibi, H.R. (2007). Cadmium affects the expression of metallothionein (MT) and glutathione peroxidase (GPx) mRNA in goldfish, Carassiusauratus. Comp. Biochem. Physiol. C., vol. 145, No 4. pp. 595–600. doi: 10.1179/oeh.2007.13.2.202

[4] Glenn, V.D. (2002). Hazardous substances from the CERCLA Priority List of Hazardous Substances for 2001 Electron. Resour. Rev., vol. 16, No 6, pp. 29–30. doi:10.1108/rr.2002.

[5] Klaassen, C.D., Liu, J., Diwan, B.A. (2009). Review Metallothionein protection of cadmium toxicity.Toxicol. Appl. Pharmacol., vol. 238, No 3, pp. 215–220. doi: 10.1016/j.taap.2009.03.026

[6] Casalino, E., Calzaretti, G., Sblano, C., Landriscina, V., Felice, Tecce, M., Landriscina, C. (2002). Antioxidant effect of hydroxytyrosol (DPE) and Mn2+ in liver of cadmium-intoxicated rats. Comp. Biochem. Physiol. C. Toxicol. Pharmacol., vol. 133(4). pp. 625–632.

[7] Flora, G., Gupta, D., Tiwari, A. (2012). Toxicity of lead: a review with recent updates. Interdiscip. Toxicol., vol. 5, No 2. pp. 47–58. doi: 10.2478/v10102-012-0009-2

[8] Regoli, F., Giuliani, M.E.(2013).Oxidativepathways of chemical toxicity and oxidative stress biomarkers in marine organisms. Mar. Environ. Res. 2014, vol. 93, pp. 106–117. doi: 10.1016/j.marenvres. 2013.07.006

[9] Vega-López, A., Ayala-López, G., Posadas-Espadas, B.P., Olivares-Rubio, H.F., Dzul-Caamal, R. (2013). Relations of oxidative stress in freshwater phytoplankton with heavy metals and polycyclic aromatic hydrocarbons. Comp. Biochem. Physiol. A Mol. Integr. Physiol., vol. 165, No. 4, pp. 498–507. doi: 10.1016/j.cbpa.2013.01.026

[10] Kim, M.O., Phyllis, E.B. (1998). Oxidative stress in critical care: is antioxidant supplementation beneficial. J. Am. Diet. Assoc., vol. 98. pp. 1001–1008.

[11] Jo, J.G., Choi, Y.K., Choi, C.Y. (2008). Cloning and mRNA expression of antioxidant enzymes in the Pacific oyster, Crassostreagigasin response to cadmium exposure. Comp. Biochem. Physiol. C., vol. 147, No 4, pp. 460–469.

[12] Poteat, M.D., Garland, T.J., Fisher N.S., Wang W.X., Buchwalter D.B. (2013). Evolutionary patterns in trace metal (cd and zn) efflux capacity in aquatic organisms. Environ. Sci. Technol., vol. 47, No. 14, pp. 7989–7995.

[13] Pan, K., Wang, W.X. (2012). Trace metal contamination in estuarine and coastal environments in China. Sci. Total Environ., vol. 421–422, pp. 3–16. doi: 10.1016/j.scitotenv.2011.03.013

[14] Slukovskii, Z.I., Polyakova, T.N. (2017). Analysis of Accumulation of Heavy Metals from River Bottom Sediments of the Urban Environment in the Bodies of Oligochaetes. Inland Water Biology., vol. 10, No 3. pp. 315–322.

[15] Slukovskiy, Z.I. (2015) Normalization of the Concentrations of Heavy Metals with respect to Lithium in Bottom Sediments of Lakes Ladozhskoye and Chetyrekhverstnoye (Republic of Karelia). Chemistry for Sustainable Development, No 4, pp. 397–408. (in Russian)

[16] Fridovich, I. (1975). Superoxide dismutases. Annu. Rev. Biochem., vol. 44, pp. 147–159.

[17] Habig, W.H., Pabst, M.J., Jakoby, W. B. (1974). Glutathione S-Transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem., vol. 249, No. 22, P. 7130–7139.

[18] Beers, R.F.Jr., Sizer, I.W. (1952). A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. Biol. Chem., vol. 195, No 1, pp. 133–140.

[19] Chance B., Maehly, A.C. (1955). Assay of catalase and peroxidases. Methods Enzymol, vol. 2, pp. 764–775.

[20] Hissin, P.J., Hilf, R. (1976). A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal. Biochem. vol. 74, No. 1, pp. 214–226.

[21] Noble, J.E., Bailey, M.A. (2009). Quantitation of Protein. Methods in Enzymology, vol. 463, pp. 73–95. doi: 10.1016/S0076-6879(09)63008-1

[22] Nan, G., Peifang, W., Chao, W., Jun, H., Jin, Q., Lingzhan, M. (2016). Mechanisms of cadmium accumulation (adsorption and absorption) by the freshwater bivalve Corbiculafluminea under hydrodynamic conditions. Environ. Pollut., vol. 212, pp. 550–558. doi: 10.1016/j.envpol.2016.01.091

[23] Eisler, R. (1985). Cadmium hazards to fish, wildlife, invertebrates: A synoptic review. U.S. Fish and Wildlife Service Biological Report, No. 85 (1.2), Washington D.C. pp. 1–46.

[24] Ramakritinan, C.M., Chandurvelan, R., Kumaguru, A.K. (2012). Acute toxicity of metals: Cu, Pb, Cd, Hg and Zn on marine mollusks, Cerithediacingulata G., and Modiolusphilippinarum H. Indian Journal of Geo-Marine Sciences., vol. 41(2), pp. 141–145.

[25] Whyte, A.L., Hook, G.R., Greening, G.E., Gibbs-Smith, E., Gardner, J.P. (2009). Human dietary exposure to heavy metals via the consumption of greenshell mussels (PernacanaliculusGmelin 1791) from the Bay of Islands, northern New Zealand. Sci. Total Environ., vol. 407, No. 14, pp. 4348–4355. doi: 10.1016/j.scitotenv.2009.04.011

[26] Brzóska, M.M., Moniuszko-Jakoniuk, J., Jurczuk, M., Gałazyn-Sidorczuk, M., Rogalska, J. (2000). Effect of short-term ethanol administration on cadmium retention and bioelement metabolism in rats continuously exposed to cadmium. Alcohol Alcohol., vol. 35(5), pp. 439–445. doi: 10.1093/alcalc/35.5.439

[27] Meng, J., Wang, W., Li, L., Yin, Q., Zhang, G. (2017). Cadmium effects on DNA and protein metabolism in oyster (Crassostreagigas) revealed by proteomic analyses. Sci. Rep., vol. 7, No. 1, P. 11716. doi: 10.1038/s41598-017-11894-7

[28] Fanjul-Moles, M.L., Gonsebatt, M.E. (2011). Oxidative stress and antioxidant systems in crustacean life cycles. In: Abele, D., Zentano-Savin, T., Vazquez-Medina, J. (eds) Oxidative stress in aquatic ecosystems. Wiley-Blackwell, Hoboken. P. 208–223.

[29] Geret, F., Serafim, A., Barreira, L., Bebianno, M.J. (2002). Effects of cadmium on anti-oxidant enzyme activities and lipid peroxidation in the gills of the clam, Ruditapes decussates. Biomarkers. vol. 7, No. 3, pp. 242–256.

[30] Lei, W., Wang, L., Liu, D., Xu, T., Luo, J. (2011). Histopathological and biochemical alternations of the heart induced by acute cadmium exposure in the freshwater crab Sinopotamonyangtsekiense. Chemosphere, vol. 84, No 5, pp. 689–694. doi: 10.1016/j.chemosphere.2011.03.023.

[31] Hamilton M.G., Esposito C., Malin M., Cusumano L.R., Botton M.L. (2015). Effects of copper and cadmium on development and superoxide dismutase levels in horseshoe crab (Limulus polyphemus) embryos. Springerplus, vol. 4, P. 504. doi: 10.1186/s40064-015-1267-1.

[32] Funes, V., Alhama, J., Navas, J.I., Lopéz-Barea, J., Peinado, J. (2006). Ecotoxicological effects of metal pollution in two mollusc species from the Spanish South Atlantic littoral. Environ. Pollut., vol. 139, No. 2, pp. 214–223. doi: 10.1016/j.envpol.2005.05.016

[33] Hansen, B.H., Garmo, O.A., Olsvik, P.A., Andersen, R.A. (2007). Gill metal binding and stress gene transcription in brown trout (Salmotrutta) exposed to metal environments: the effect of pre-exposure in natural populations. Environ. Toxicol. Chem., vol. 26, No. 5. pp. 944–953.

[34] Roméo, M., Bennani, N., Gnassia-Barelli, M., Lafaurie, M., Girard, J.P. (2000). Cadmium and copper display different responses towards oxidative stress in the kidney of the sea bass Dicentrarchuslabrax. AquatToxicol., vol. 1, No 48(2–3), pp. 185–194.

[35] Tamás, L., Durceková K., Halusková L., Huttová J., Mistrík I., Ollé M. (2007). Rhizosphere localized cationic peroxidase from barley roots is strongly activated by cadmium and correlated with root growth inhibition. Chemosphere, vol. 66(7), pp. 1292–1300.

[36] Kashiwagi, A., Kashiwagi, K., Takase, M., Hanada, H., Nakamura, M. (1997). Comparison of catalase in diploid and haploid Ranarugosa using heat and chemical inactivation techniques. Comp. Biochem. Physiol. B Biochem. Mol. Biol., vol. 118, No. 3, pp. 499–503.

[37] Frova, C. (2006). Glutathione Transferases in the Genomics Era: New Insights and Perspectives. Biomol. Eng., vol. 23, No. 4, pp. 149–169. doi: 10.1016/j.bioeng.2006.05.020

[38] Pinheiro, M., Caetano, M., Neuparth, T., Barros, S., Soares, J., Raimundo, J., Vale, C., Coimbra, J., Castro, L.F.C., Santos, M.M. (2019). Ecotoxicology of deep-sea environments: Functional and biochemical effects of suspended sediments in the model species Mytilusgalloprovincialis under hyperbaric conditions. Sci. Total Environ., vol. 670, pp. 218–225. doi: 10.1016/j.scitotenv.2019.03.196

[39] Sidhu, M., Prasad, R., Gill, K.D., Nath, R. (1997). Alterations in isoforms of glutathione S-transferase in liver and kidney of cadmium exposed rhesus monkeys: purification and kinetic characterization. Mol Cell Biochem., vol. 166 (1–2), pp. 55–63. DOI: 10.1023/a:1006849431209