Formation of Polyelectrolyte Complexes from Chitosan and Alkaline Gelatin


The interaction of chitosan and alkaline gelatin biopolymers in formation of polyelectrolyte complexes has been studied by the Fourier IR spectroscopy and scanning electron microscopy. Also the influence of chitosan on the morphology of gelatin hydrogels has been observed. It has been shown that in the range of chitosan (C)/gelatin (G) (w/w) ratio Z = g= gC/gG from 0.1 to 1.5, chitosan–gelatin complexes are formed due to electrostatic interactions of charges amino-groups of chitosan and carboxylic groups of gelatin as well as due to intermolecular hydrogen bonds. In this case, the share of collagen-like triple helices in the spatial network of hydrogel decreases. The formation of chitosan–gelatin complexes leads to the qualitative changes in the hydrogel morphology even at low ratios of biopolymer (at Z = 0.025 gC/gG). The fiber-like structure of gelatin gels transforms and less structured but denser zones appear in the gel network.

[1] Izumrudov, V. A. (2008). Self-assembly and molecular ‘recognition’ phenomena in solutions of (bio)polyelectrolyte complexes. Russian Chemical Reviews, vol. 77, pp. 381–393.

[2] Turgeon, S. L., Laneuville, S. I. (2009). Protein + Polysaccharide Coacervates and Complexes: From Scientific Background to their Application as Functional Ingredients in Food Products, in Kasapis, S., Norton, I. T., Ubbink J. B. (Eds.). Modern Biopolymer Science. London: Academic Press, pp. 327–363.

[3] Gubbala, S. K. (2012). Polyelectrolyte complex: A pharmaceutical review. International Journal of Pharmacy and Biological Sciences, vol. 2, pp. 399–407.

[4] Jasmeet, K., Harikumar, S. L., Amanpreet, K. (2012). Interpolyelectrolyte complexes as prospective carriers for controlled drug delivery. International research journal of pharmacy, vol. 3, pp. 58–62.

[5] Zezin, A. B., Kabanov, V. A. (1982). A New Class of Complex Water-soluble Polyelectrolytes. Russian Chemical Reviews, vol. 51, pp. 833–855.

[6] Kabanov, V. A. (2005). Polyelectrolyte complexes in solution and in a bulk. Russian Chemical Reviews, vol. 74, pp. 3–23.

[7] Kramarenko, E. Y., Khokhlov, A. R., Reineker, P. (2006). Stoichiometric polyelectrolyte complexes of ionic block copolymers and oppositely charged polyions. J. Chem. Phys., vol. 125, pp. 1–8.

[8] Kizilay, E., Kayitmazer, A. B., Dubin, P. L. (2011). Complexation and coacervation of polyelectrolytes with oppositely charged colloids. Advances in Colloid and Interface Science, vol. 167, pp. 24–37.

[9] Muzzarelli, R. A. A., Rocchetti, R., Stanic, V., et al. (1997). Methods for the determination of the degree of acetylation of chitin and chitosan, in Muzzarelli, R. A. A., Peter, M. G. (Eds.). Chitin Handbook. Grottammare: Atec Edizioni, pp. 109–119.

[10] Muzzarelli, R. A. A., Muzzarelli, C. (2009). Chitin and chitosan hydrogels, in Phillips, G. O., Williams P. A. (Eds.). Handbook of hydrocolloids, (2-nd ed.). Boca Raton, FL: CRC Press, pp. 849–888.

[11] Il’ina, A. V., Varlamov, V. P. (2005). Chitosan-based polyelectrolyte complexes: A review. Appl. Biochem. Microbiol, vol. 41, pp. 5–11.

[12] Hamman, J. H. (2010). Chitosan Based Polyelectrolyte Complexes as Potential Carrier Materials in Drug Delivery Systems. Marine Drugs, vol. 8, pp. 1305–1322.

[13] Krayukhina, M. A., Samoilova, N. A., Yamskov, I. A. (2008). Polyelectrolyte complexes of chitosan: formation, properties and applications. Russian Chemical Reviews, vol. 77, pp. 799–813.

[14] Izumrudov, V. A., Volkova, I. F., Grigoryan, E. S., et al. (2011). Water-soluble nonstoichiometric polyelectrolyte complexes of modified chitosan. Polymer Science Series A, vol. 53, pp. 281–288.

[15] Veis, A. (1964). The Macromolecular Chemistry of Gelatin. London: Academic Press.

[16] Yannas, I. V. (1972). Collagen and Gelatin in the Solid State. Polymer Review, vol. 7, pp. 40–106.

[17] Haug, I. J., Draget, K. I. (2009). Gelatin, in Phillips, G. O., Williams P. A. (Eds.). Handbook of hydrocolloids, (2-nd ed.). Boca Raton, FL: CRC Press, pp. 142–163.

[18] Yin, Y., Li, Z., Sun, Y., et al. (2005). A preliminary study on chitosan/gelatine polyelectrolyte complex formation. J. Mater. Sci. (Letters), vol. 40, pp. 4649–4652.

[19] Voron’ko, N. G., Derkach, S. R., Kuchina, Y. A., et al. (2016). The chitosan–gelatin (bio)polyelectrolyte complexes formation in an acidic medium. Carbohydrate Polymers, vol. 138, pp. 265–272.

[20] Derkach, S., Voron’ko, N., Sokolan, N. (2016). The rheology of hydrogels based on chitosan–gelatin (bio)polyelectrolyte complexes. Journal of Dispersion Science and Technology, vol. 38, pp. 1427–1434.

[21] Clark, A. H., Ross-Murphy, S. B. (1987). Structural and Mechanical-properties of biopolymer gels. Adv. Polym. Sci., vol. 83, pp. 57–192.

[22] Rabek, J. F. (1980). Experimental Methods in Polymer Chemistry: Physical Principles and Applications. New York, NY: John Wiley & Sons, Inc.

[23] Silverstein, R. M., Vebster, F. X., Kiemle, D. J. (2005). Spectrometric identification of organic compounds, (7-th ed.). New York, NY: John Wiley & Sons, Inc.

[24] Prystupa, D. A., Donald, A. M. (1996). Infrared study of gelatin conformations in the gel and sol states. Polymer Gels and Networks, vol. 4, pp. 87–110.

[25] Muyonga, J. N., Cole, C. G. B., Dyodu, K. G. (2004). Fourier transform infrared (FTIR) spectroscopy study of acid soluble collagen and gelatin from skin and bones of young and adult Nile perch (Lates niloticus). Food Chemistry, vol. 86 pp. 325–332.

[26] Gomez-Guillen, M. C., Lopez-Caballero, M. E., Aleman, A., et al. (2010). Antioxidant and antimicrobial peptide fractions from squid and tuna skin gelatin, in Le Bihan, E. (Ed.). Sea By-Products as Real Material: New Ways of Application. Transworld Research Network, pp. 89–115.

[27] Staroszczyk, H., Sztuka, K., Wolska, J., et al. (2014). Interactions of fish gelatin and chitosan in uncrosslinked and crosslinked with EDC films: FT-IR study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 117, pp. 707–712.

[28] Xhio, C., Liu, H., Lu, Y., et al. (2001). Blend Films from sodium alginate and gelatin solutions. Journal of Macromolecular Science, Part A, vol. 38, pp. 317–328.

[29] Pranoto, Y., Lee, C. M., Park, H. J. (2007). Characterization of fish gelatin films added with gellan and κ-carrageenan. LWT – Food Science and Technology, vol. 40, pp. 766–774.

[30] Wang, Y., Qiu, D., Cosgrove, T., et al. (2009). A small-angle neutron scattering and rheology study of the composite of chitosan and gelatin. Colloid and Surfaces B: Biointerfaces, vol. 70, pp. 254–258.

[31] Yakimets, I., Wellner, N., Smith, A. C., et al. (2005). Mechanical properties with respect to water content of gelatin films in glassy state. Polymer, vol. 46, pp. 12577–12585.

[32] Al-Saidi, G. S., Al-Alawi, A., Rahman, M. S., et al. (2012). Fourier transform infrared (FTIR) spectroscopic study of extracted gelatin from shaari (Lithrinus microdon) skin: effects of extraction conditions. International Food Research Journal, vol. 19, pp. 1167–1173.

[33] Derkach, S. R., Ilyin, S. O., Maklakova, A. A., et al. (2015). The rheology of gelatin hydrogels modified by κ-carrageenan. LWT – Food Science and Technology, vol. 63 pp. 612–619.