Genetic Differentiation, Mating Systems and Crossability of Three Floral Variants of Sandalwood (Santalum album L.) in Gunung Sewu Geopark, Indonesia

Abstract

Despite the degradation in their origin in the south-eastern islands of Indonesia, sandalwood (Santalum album L.) recently occurs as new landraces in Gunung Sewu Geopark, Java island, Indonesia. All of the landraces consisted of three floral variants (YBF, refers to ‘yellow big flower’; RBF, ‘red big flower’; and RSF, ‘red small flower,’ respectively), which were differed in floral structures. Isoenzymes and hand-pollination treatments were combined to analyze whether these variants have different genetic diversity, mating systems, and crossing ability. Observed heterozygosity varied significantly with sites (H

References
[1] Bottin L, Tassin J, Nasi R, Bouvet J. Molecular, quantitative and abiotic variables for the delineation of evolutionary significant units: case of sandalwood (Santalum austrocaledonicum Vieillard) in New Caledonia. Conserv Genet. 2007. 8 (1):99–109. https://link.springer.com/article/10.1007/s10592-006-9152-7


[2] Byrne M, MacDonald B, Broadhurst L, Brand J. Regional genetic differentiation in Western Australian sandalwood (Santalum spicatum) as revealed by nuclear RFLP analysis. Theor Appl Genet 2003. 107:1208–1214. https://link.springer.com/content/ pdf/10.1007/s00122-003-1365-2.pdf


[3] Dani KGS, Ravikumar P, Kumar RP, Kush A. Genetic variation within and among small isolated populations of Santalum album. Biologia Plantarum 2011. 55 (2): 323-326. https://pubag.nal.usda.gov/catalog/416757


[4] Rao MN, Ganeshaiah KN, Shaanker RU. Assessing threats and mapping sandal resources to identify genetic ‘hot-spot’ for in-situ conservation in peninsular India. Conserv Genet 2007. 8: 925–935. https://link.springer.com/article/10.1007% 2Fs10592-006-9247-1


[5] Wolf PG, Campbell DR, Waser NM, Sipes SD, Toler TR, and Archibald JK. Tests of pre- and postpollination barriers to hybridization between sympatric species of Ipomopsis (Polemoniaceae). Am J Bot. 2001. 88(2): 213–219. https://www.ncbi.nlm. nih.gov/pubmed/11222244


[6] Lhuillier E, Butaud JF, Bouvet JM. Extensive clonality and strong differentiation in the Insular Pacific tree Santalum insulare: implications for its conservation. Ann Bot 2006. 98: 1061–1072. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292246/


[7] Fernandez VA, Galetto L, Astegiano J. Influence of flower functionality and pollination system on the pollen size-pistil length relationship. Organisms, Diversity & Evolution. 2009. 9: 75–82. https://www.sciencedirect.com/science/article/pii/ S1439609209000038


[8] Warburton CL, James EA, Fripp YJ, Trueman SJ, Wallace HM. Clonality and sexual reproductive failure in remnant populations of Santalum lanceolatum (Santalaceae). Biological conservation 2000. 96 (1): 45–54. http://research.usc.edu.au/vital/access/ manager/Repository/usc:872


[9] Wolf PG, Campbell DR, Waser NM, Sipes SD, Toler TR, and Archibald JK. Tests of preand postpollination barriers to hybridization between sympatric species of Ipomopsis (Polemoniaceae). Am J Bot. 2001. 88(2): 213–219. http://onlinelibrary.wiley.com/doi/ 10.2307/2657012/abstract


[10] IUCN. Asian Regional Workshop on Conservation & Sustainable Management of Trees, Viet Nam, August 1996. Santalum album. The IUCN Red List of Threatened Species. 1998:1–4. http://dx.doi.org/10.2305/IUCN.UK.1998.RLTS. T31852A9665066.en.


[11] da Silva JAT, Page T, Zhang X, Kher MM, Nataraj M, Soner D, Ma G. Sandalwood: basic biology, tissue culture, and genetic transformation. Planta 2016. 243: 847–887. https://www.ncbi.nlm.nih.gov/pubmed/26745967


[12] Indrioko S and Ratnaningrum YWN. Habitat loss caused clonality, genetic diversity reduction and reproductive failure in Santalum album (Santalaceae), an endangered endemic species of Indonesia. Proc Env Sci. 2015. V: 613–620. https://www. sciencedirect.com/science/article/pii/S1878029615002893


[13] Haryono E and Suratman. Significant features of Gunung Sewu Karst as geopark site. Proceeding on 4th International UNESCO Conference on Geopark, April 12-15, 2010. Langkawi, Malaysia. 2010: 1–9. http://www.academia.edu/2559967/ Significant_features_of_Gununsewu_Karst_as_Geopark_Site


[14] Sindhu-Veerendra, HC and Anantha-Padmanabha HS. The breeding system in Sandal (Santalum album L.). Silvae Genetica. 1996. 45 (4): 188–190. https://www.researchgate.net/publication/286758350_The_breeding_system_in_sandal_Santalum_album_L


[15] Barrett SCH, Baker AM, Jesson LK. Mating strategies in Monocotyledons. Monocots Newsletter II. Depertment of Botany, University of Toronto. Ontario, Canada; 2006: 258–269 http://labs.eeb.utoronto.ca/barrett/pdf/SCHB_175.pdf


[16] Suma TB, Balasundaran M. Isozyme variation in five provenances of Santalum album in India. Aust J Bot 2003. 51(3): 243–249. http://www.publish.csiro.au/BT/BT02094


[17] Rughkla A, McComb JA, and Jones MGK. Intra-and inter specific pollination of Santalum spicatum and S. album. Aust J Bot. 1997. 45(6): 1083–1095. http://www. publish.csiro.au/BT/BT96079


[18] Torres E, Iriondo JM, and Perez C. Vulnerability and determinants of reproductive success in the narrow endemic Antirrhinum microphyllum (Scrophulariaceae). Am J Bot. 89, 2002. (7): 1171–1179. http://onlinelibrary.wiley.com/doi/10.3732/ajb.89.7.1171/abstract


[19] Herawan T, Na’iem M, Indrioko S, Indrianto A. Somatic embryogenesis of Sandalwood (Santalum album L.). Indonesian Journal of Biotechnology. 2014. Vol. 19, No. 2, pp.168–175. https://jurnal.ugm.ac.id/ijbiotech/article/view/9311


[20] Ratnaningrum YWN and Indrioko S. Response of flowering and seed production of sandalwood (Santalum album linn., Santalaceae) to climate changes. Proc Env Sci. 2015. V: 665–675. https://www.sciencedirect.com/science/article/pii/ S187802961500290X


[21] Ratnaningrum YWN and Indrioko S. Variation on genotypes and flowering characters affecting pollination mechanisms of sandalwood (Santalum album Linn., Santalaceae) planted on ex-situ gene conservation in Yogyakarta, Indonesia. Eur J For Res. 2014. VI: 167–179. https://eprints.lib.hokudai.ac.jp/dspace/handle/2115/56853


[22] Tamla HT, Cornelius JP, Page T. Reproductive biology of three commercially valuable Santalum species: development of flowers and inflorescences, breeding systems,and interspecific crossability. Euphytica 2012. 184:323–333. https://researchonline. jcu.edu.au/20127/

[23] Applegate GB, Davis AGW, Annable PA. Managing sandalwood for conservation in North Queensland, Australia. Proceedings of the Symposum on Sandalwood in the Pacific, Honolulu, Hawaii, USDA Forest Service. 1990:12–18. https://www.fs.usda.gov/ treesearch/pubs/27489


[24] Herlihy CR and Eckert CG. Evolution of self-fertilization at geographical range margins? A comparison of demographic, floral, and mating system variables in central vs. peripheral populations of Aquilegia canadensis (Ranunculaceae). Am J Bot 2005. 92(4): 744–751. https://www.ncbi.nlm.nih.gov/pubmed/21652454


[25] Frankham R, Ballou JD, and Briscoe DA. Introduction to Conservation Genetics. Cambridge University Press. Cambridge; 2002. p. 617. https://trove.nla.gov.au/work/ 4009564?selectedversion=NBD22591538


[26] Owens JN, Sornsathapornkul P, Thangmitcharoen S. Studying flowering and seed ontogeny in tropical forest trees. ASEAN-Canada Forest Tree Seed Centre. Muaklek, Saraburi 18180, Thailand; 2001. p. 134. http://agris.fao.org/agris-search/search. do?recordID=XF2016045131


[27] Simanjuntak T. Gunung Sewu in prehistoric times. Gadjah Mada University Press. Yogyakarta, Indonesia; 2002. p. 296. https://books.google.co.id/books/about/ Gunung_Sewu_in_Prehistoric_Times.html id=onKBAAAAMAAJ&redir_esc=y


[28] Dudash MR and Fenster CB. The role of breeding system and inbreeding depression in the maintenance of an outcrossing mating strategy in Silene virginica (Caryophyllaceae). Am J Bot 2001. 88 (11): 1953–1959. https://www.ncbi.nlm.nih.gov/pubmed/ 21669628


[29] Arroyo MTK, Munoz MS, Henríquez C, Till-Bottraud I, Perez F. Erratic pollination, high selfing levels and their correlates and consequences in an altitudinally widespread above-tree-line species in the high Andes of Chile. Acta Oecologica 2006. 30: 248– 257. https://www.sciencedirect.com/science/article/pii/S1146609X0600066X


[30] Harlan JR and Wet, JMJ. Toward a rational classification of cultivated plants. Taxon 1971. 20 (4): 509–517. https://www.jstor.org/stable/1218252