Functional Organization of the Brain and Psychic Activity: A View Beyond Luria (With Luria)


This paper reviews, elaborates, and rebuilds Luria’s model of the three functional units of the brain. As a result, five functional brain units have been delineated: preferential (unit for life-support and arousal regulation), limbic (unit for valuation/motivation and for context memory), cortical and thalamic-cortical (“the conscious agent”), basal ganglia (”the reinforcer”), and cerebellar (”the supervisor”). The new model is more realistic; it includes elements missing from Luria’s model and avoids a corticocentric approach. It will allow a better analysis of the effects of brain pathology on cognition, neuropsychiatry, and behavior. Within the framework, the concept of complex functional system is maintained and expanded.

Keywords: brain, functional model, complex systems, cortex, Luria

[1] Anokhin, P. K. (1935). Problema tsentra i periferii b fisiologii nervnoi deiatelnosti (The problem of the center and periphery in the physiology of nervous activity). Gorki: State Press.

[2] Ardila, A. (2018). Historical development of human cognition. Singapore: Springer.

[3] Blumenfeld, H. (2010). Neuroanatomy through clinical cases (ed. 2). Sunderland, MA: Sinauer.

[4] Cabanac, M. (2010). The dialectics of pleasures. In M.L., Kringelbach y K.C. Berridge (eds.), Pleasures of the brain (pp. 113-124), New York: Oxford.

[5] Catani, M., & Thiebaut de Schotten, M. (2012). Atlas of human Brain Connections. New York: Oxford.

[6] Clark, D.L., Boutros, N.N, & Mendez, M.F. (2010). The brain and behavior. Cambridge: Cambridge.

[7] Damasio, A. (2009). Neuroscience and the emergence of neuroeconomics. In P.W. Glimcher. C.F. Camerer, E. Fher, R. & Poldrack (eds.), Neuroeconomics, (pp. 209-213), London: Academic Press.

[8] Di Perri, C., Stender, J., Laureys, S., & Gosseries, O. (2014). Functional neuroanatomy of disorders of consciousness. Epilepsy and Behavior, 30, 28-32.

[9] Doya, K. (2000). Complementary roles of basal ganglia and cerebellum in learning and motor control. Current Opinion in Neurobiology, 10, 732-739.

[10] Friederici, A.D. (2011). The brain basis of language processing: from structure to function. Physiological Reviews, 91, 1357-1392.

[11] Gazzaniga, M.S., Ivry, R., B., & Mangun, G.R. (2014). Cognitive neuroscience (ed. 4). New York: Norton.

[12] Hariri, A.R. (2015). Looking inside the disordered brain. Sunderland, MA: Sinauer.

[13] Henke, K. (2010). A model for memory systems based on processing modes than consciousness. Natures Reviews, Neuroscience, 11, 523-532.

[14] Huth, A.G., de Heer, W.A., Griffiths, T. L., Theunissen, F.E., & Gallant, J. L. (2016). Natural Speech reveals semantic maps that tile human cerebral cortex. Nature, 532, 453-458.

[15] Hwang, K., Bertolero, M.A., Liu, W.B., & D’Esposito, M. (2017). The human thalamus is an integrative hub for functional brain networks. Journal of Neuroscience, 37, 5594- 5607.

[16] Kennedy, H., Van Essen, D.C., & Christen, Y., eds (2016). Micro-, meso- and macroconnectomics of the brain. Cham: Springer.

[17] Koziol, L.F., & Budding, D. E. (2009). Subcortical Structures and Cognition. New York: Springer.

[18] Koziol, L.F., Budding, D., Andreasen, N., D’Arrigo, S., Bulgheroni, S., Imamizu, H., et al. (2014). The cerebellum’s role in movement and cognition. Cerebellum, 13, 151-157.

[19] Lambon Ralph, M.A., Jefferies, E., Patterson, & K. Rogers, T. (2017). The neural and computational bases of semantic cognition. Nature Reviews, 18, 42-55.

[20] Luria. A.R. (1973). Osnovi neiropsijologii [Fundamentals of neuropsychology]. Moscow: University of Moscow. English edition (1973). The working brain. London: Penguin.

[21] McFarland, D.J., & Sibly, R.M. (1975). The behavioural final common path. Philosophical Transactions of the Royal Society of London, 270, 265-293.

[22] Mesulam, M. M. (2000). Principles of Behavioral and Cognitive Neurology. New York: Oxford.

[23] Parvizi, J. (2009). Corticocentric myopia: old bias in new cognitive sciences. Trends in cognitive sciences, 13, 354-359.

[24] Peer, M., Salomon, R., Goldberg, O., & Arzy, S. (2015). Brain systems for mental orientation in space, time, and person. Proceedings of the National Academy of Sciences, 113; 11072-11077.

[25] Peña-Casanova, J. (1989). A. R. Luria today: some notes on “lurianism” and the fundamental bibliography of A.R. Luria. Journal of Neurolinguistics, 4, 161-178

[26] Pulvermuller, F. (2013). How neurons make meaning: brain mechanisms for embodied and abstract-symbolic semantics. Trends in Cognitive Sciences, 17, 458- 470.

[27] Schmahmann, J.D. (2004). Disorders of the cerebellum: ataxia, dysmetria of thought, and cerebellar cognitive affective syndrome. Journal of Neuropsychiatry and Clinical Neuroscience, 16, 367-378.

[28] Shepherd. G.M. (2004). The synaptic organization of the brain. New York: Oxford.

[29] Sporns, O. (2016). Connectome networks: from cells to systems. In H. Kennedy, D.C. Van Essen, Y. & Christen., eds (2016). Micro-, meso- and macro- connectomics of the brain (pp. 107-127). Cham: Springer.

[30] Téllez, A., & Sánchez, T. de J. (2016). Luria’s model of the functional units of the brain and the neuropsychology of dreaming. Psychology in Russia, 9, 80-93.

[31] Wang, X.-J. (2010). Neurophysiological and computational principles of cortical rhythms in cognition. Physiological Reviews, 90, 1195-1268.

[32] Wu, X., Zou, Q., Hu, J., Tang, W., Mao, Y. Gao, L, et al. (2015). Intrinsic functional connectivity patterns predicts consciousness level recovery outcome in acquired brain injury. Journal of Neuroscience, 25, 12932-12946.

[33] Yakovlev, P.I. (1948). Motility, behavior, and the brain. J. Nervous and Mental Diseases, 107, 313-35.

[34] Yeo, B.T.T., Krienen, F.M., Sepulcre, J., Sabuncu, M, R., Lashkari, D.; Hollinshead, M. et al. (2011). The organization of cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106: 1125-1165.

[35] Yin, H. H., & Knowlton, B. J. (2006). The role of the basal ganglia in habit formation. Nature, 7, 464-76.