Application of Secondary Metabolites of Two Pseudomonas fluorescens Isolates to Control Bacterial Wilt of Potato

Abstract

The focus of this research was to determine how secondary metabolites from two isolates of Pseudomonas fluorescens (P8 and P60) affected potato plant resistance to bacterial wilt (Ralstonia solanacearum) as well as potato growth and productivity. For four months, this experiment was carried out at Serang Village’s potato field, in Karangreja District, Purbalingga Regency, at an altitude of 1285 m above sea level, with Andisol soils, an average temperature of 22.31 C, and relative humidity of 84.09%. A randomized block design was used with a control treatment, drenching with 1.5 g/L bactericide (20% streptomicin sulphate) administered six times, and drenching with secondary metabolites of P. fluorescens P8 or P. fluorescens P60 administered three, six, nine, and 12 times. Each treatment was carried out five times. Each treatment resulted in a different incubation period, disease intensity, infection rate, plant height, number of tubers, tuber weight per plant, wet and dry weight of crop, fresh and dry weight of root, number of branches, and phenolic compound analysis. The results showed that applying P. fluorescens P8 and P. fluorescens P60 secondary metabolites to potato plants can induce resistance by increasing the content of phenolic compounds in the plants. Drenching with secondary metabolites from P. fluorescens P8 or P. fluorescens P60 12 times can reduce the incubation period by 9.23%, the intensity of disease by 75%, and the incidence of disease by 53.57%. Plant height, crop dry weight, root fresh weight, root dry weight, number of tubers, and tuber weight per plant can all be increased by using secondary metabolites.


Keywords: bacterial wilt, potato, Pseudomonas fluorescens, secondary metabolites.


 

References
[1] Zhang H, Xu F, Wu Y, Hu H-H, Dai X-F. Progress of potato staple food research and industry development in China. Journal of Integrative Agriculture. 2017;16(12):2924- 2932. https://doi.org/10.1016/S2095-3119(17)61736-2

[2] Ministry of Agriculture of the Republic of Indonesia. Produksi kentang menurut provinsi tahun 2015-2019. Pertanian.go.id; 2021. Available from: https://www.pertanian.go.id/home/?show=page&act=view&id=61

[3] Shahbandeh M. Global potato production 2002-2019. Statista.com; 2021; January 1, 2022. Available from: https://www.statista.com/statistics/382174/global-potatoproduction/#:∼:text=Global%20potato%20production%202002%2D2019&text=According%2

[4] Farag SMA, Elhalag KMA, Hagag MH et al. Potato bacterial wilt suppression and plant health improvement after application of different antioxidants. Journal of Phytopathology. 2017;165(7-8):522-537. https://doi.org/10.1111/jph.12589

[5] Karim Z, Hossain MS, Begum MM. Ralstonia solanacearum: A threat to potato production in Bangladesh. Fundamental and Applied Agriculture. 2018;3(1):407-421. https://doi.org/10.5455/faa.280361

[6] Muthoni J, Shimelis H, Melis R. Conventional breeding of potatoes for resistance to bacterial wilt (Ralstonia solanacearum): Any light in the horizon? Australian Journal of Crop Science. 2020;14(3):485-494. https://doi.org/10.21475/ajcs.20.14.03.p2144

[7] Yuliar, Nion YA, Toyota K. Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum. Microbes and Environments. 2015;30(1):1–11. https://doi.org/10.1264/jsme2.ME14144

[8] Popoola AR, Ganiyu SA, Enikuomehin OA et al. Isolation and characterization of Ralstonia solanacearum causing bacterial wilt of tomato in Nigeria. Nigerian Journal of Biotechnology. 2015;29:1–10. https://doi.org/10.4314/njb.v29i1.1

[9] Ullah MR, Dijkstra FA. Fungicide and bactericide effects on carbon and nitrogen cycling in soils: A meta-analysis. Soil Systems. 2019;3(23). https://doi.org/10.3390/soilsystems3020023

[10] Meena RS, Kumar S, Datta R et al. Impact of agrochemicals on soil microbiota and management: A review. Land. 2020;9(34). https://doi.org/10.3390/land9020034

[11] Soesanto L, Mugiastuti E, Manan A, Wachjadi M. Pengujian kemampuan mikroba antagonis untuk mengendalikan penyakit hawar daun dan layu bakteri pada tanaman kentang di daerah endemis. Jurnal Agrin. 2013;17(2):1-11.

[12] Mugiastuti E, Rahayuniati RF, Sulistyanto P. Pemanfaatan Bacillus sp. dan Pseudomonas fluorescens untuk mengendalikan penyakit layu tomat akibat sinergi Ralstonia solanacaerum dan Meloidogyne sp. Paper presented at: Prosiding Seminar Nasional “Pengembangan Sumber Daya Pedesaan dan Kearifan Lokal Berkelanjutan II”; 2012 Nov 27-28; Purwokerto, Indonesia.

[13] Soesanto L, Mugiastuti E, Khoeruriza. Granular formulation test of Pseudomonas fluorescens P60 for controlling bacterial wilt (Ralstonia solanacearum) of tomato in planta. AGRIVITA Journal of Agricultural Science. 2019;41(3):513–523. https://doi.org/10.17503/agrivita.v41i3.2318

[14] Townsend GK, Heuberger JW. Methods for estimating losses caused by diseases in fungicide experiments. The Plant Disease Reporter. 1943;27:340-343.

[15] Swanson JK, Yao J, Tans-Kersten J, Allen C. Behavior of Ralstonia solanacearum race 3 biovar 2 during latent and active infection of geranium. Phytopathology. 2005;95:136-143. https://doi.org/10.1094/PHYTO-95-0136

[16] Gashaw G, Alemu T, Tesfaye K. Evaluation of disease incidence and severity and yield loss of finger millet varieties and mycelial growth inhibition of Pyricularia grisea isolates using biological antagonists and fungicides in vitro condition. Journal of Applied Biosciences. 2014;73:5883–5901.

[17] van der Plank JE. Plant diseases: Epidemics and control. New York: Academic Press; 1963.

[18] Raaijmakers JM, Weller DM. Natural plant protection by 2.4-diacetylphloroglucinolproducing Pseudomonas spp. in take-all decline soils. Molecular Plant-Microbe Interactions. 1998;11:144-152. https://doi.org/10.1094/MPMI.1998.11.2.144

[19] Deveau A, Gross H, Palin B et al. Role of secondary metabolites in the interaction between Pseudomonas fluorescens and soil microorganisms under iron-limited conditions. FEMS Microbiology Ecology. 2016;92(8):fiw107. https://doi.org/10.1093/femsec/fiw107

[20] Soesanto L, Mugiastuti E, Rahayuniati RF. Biochemical characteristic of Pseudomonas fluorescens P60. Journal of Biotechnology & Biodiversity. 2011;2:19-26.

[21] Mezaache-Aichour S, Guechi A, Zerroug MM, Nicklin J, Strange RN. Antimicrobial activity of Pseudomonas secondary metabolites. Pharmacognosy Communications. 2013;3(3):39-44.

[22] Trapet P, Avoscan L, Klinguer A et al. The Pseudomonas fluorescens siderophore pyoverdine weakens Arabidopsis thaliana defense in favor of growth in iron-deficient conditions. Plant Physiol. 2016;171(1):675–693. https://doi.org/10.1104/pp.15.01537

[23] Suresh P, Vellasamya S, Almaary KS, Dawoud TM, Elbadawi YB. Fluorescent pseudomonads (FPs) as a potential biocontrol and plant growth promoting agent associated with tomato rhizosphere. Journal of King Saud University – Science. 2021;33(4):101423. https://doi.org/10.1016/j.jksus.2021.101423

[24] Li S, Liu Y, Wang J et al. Soil acidification aggravates the occurrence of bacterial wilt in South China. Frontiers Microbiol. 2017. 8. https://doi.org/10.3389/fmicb.2017.00703

[25] Li X, Liu Y, Cai L, Zhang H, Shi J, Yuan Y. Factors affecting the virulence of Ralstonia solanacearum and its colonization on tobacco roots. Plant Pathology. 2017;66(8):1345-1356. https://doi.org/10.1111/ppa.12675

[26] Freeman BC, Beattie GA. An overview of plant defenses against pathogens and herbivores: The plant health instructor. 2008. The American Phytopathological Society. St. Paul. https://doi.org/10.1094/PHI-I-2008-0226-01

[27] War AR, Paulraj MG, Ahmad T et al. Mechanisms of plant defense against insect herbivores. Plant Signal Behavior. 2012;7(10):1306–1320. https://doi.org/10.4161/psb.21663

[28] Wallis CM, Galarneau ERA. Phenolic compound induction in plant-microbe and plant-insect interactions: A meta-analysis. Front. Plant Science. 2020. 11. https://doi.org/10.3389/fpls.2020.580753

[29] Ewané CA, Lepoivre P, de Lapeyre de Bellaire L, Lassois L. Involvement of phenolic compounds in the susceptibility of bananas to crown rot. A review. Biotechnology, Agronomy, Society and Environment. 2012;16(3):393-404.

[30] Maqqon M, Kustantinah, Soesanto L. Penekanan hayati penyakit layu fusarium tanaman cabai merah. Jurnal Agrosains. 2006;8(1):50-56.

[31] Santoso SE, Soesanto L, Haryanto TAD. Penekanan hayati penyakit moler pada bawang merah dengan Tricoderma harzianum, Trichoderma koningii, dan Pseudomonas fluorescens P60. Jurnal Hama dan Penyakit Tumbuhan Tropika. 2007;7(1):53-61.

[32] Hastopo K, Soesanto L, Mugiastuti E. Penyehatan tanah secara hayati di tanah tanaman tomat terkontaminasi Fusarium oxysporum f.sp. lycopersici. Jurnal Akta Agrosia. 2008;11(2):180-187.

[33] Landa BB, de WerdHenricus AE, McSpadden Gardener BB, Weller DM. Comparison of three methods for monitoring populations of different genotypes of 2.4-diacethylphloroglucinol-producing Pseudomonas fluorescens in rhizosphere. Phytopathology. 2002;92:129-137. https://doi.org/10.1094/PHYTO.2002.92.2.129

[34] Slovak R, Ogura T, Satbhai SB, Ristova D, Busch W. Genetic control of root growth: From genes to networks. Annals of Botany. 2016;117(1):9–24. https://doi.org/10.1093/aob/mcv160

[35] Onwuka B, Mang B. Effects of soil temperature on some soil properties and plant growth. Advances in Plants & Agriculture Research. 2018;8(1):34-37. https://doi.org/10.15406/apar.2018.08.00288

[36] Viti C, Tatti E, Decorosi F et al. Compost effect on plant growth-promoting rhizobacteria and mycorrhizal fungi population in maize cultivations. Compost Science and Utilization. 2010;18(4):273-281.

[37] Kloepper JW, Tuzun S, Zehnder GW, Wei G. Multiple disease protection by rhizobacteria that induce systemic resistance-historical precedence. Phytopathology. 1997;87(2):136-137.

[38] Dowling DN, O’Gara F. Metabolites of Pseudomonas involved in the biocontrol of plant disease. Tibtech. 1994;12:133-141.