Indole Acetic Acid-Producing and Phosphate-Solubilizing Bacteria From the Rhizosphere of Clove (Syzygium Aromaticum L.) in Bali, Indonesia

Abstract

Clove plants are routinely fertilized with synthetic fertilizer to increase yield. The use of synthetic fertilizer reduces soil productivity. Biofertilizer can be used as an alternative for increasing soil fertility. The goal of this study was to determine the potency of bacteria isolates capable of producing indole acetic acid (IAA) hormone and solubilizing phosphate, and to identify bacteria species from the rhizosphere of clove plants. Soil samples were collected from the clove plants’ rhizosphere, environmental parameters were measured, the potency of IAA-producing and phosphate-solubilizing bacteria was analyzed, and bacteria were molecularly identified. After 48 hours of incubation, isolate TCKI 5 from Karangasem produced the highest IAA hormone levels (19.64 ppm), and isolate TCBP 6 from Buleleng had the highest index of solubilizing phosphate (1.91). A compatibility test between the three best isolates of IAA hormone-producing and phosphate-solubilizing bacteria revealed that TCKI 5 was able to associate with TCBP 6. Isolate TCKI 5 was identified as Leclercia adecarboxylata C107 with a 99.92% similarity, and isolate TCBP 6 as Burkholderia cepacia GJ8 with a 99.61% similarity.


Keywords: Bacteria, clove, Indole Acetic Acid, phosphate, rhizosphere

References
[1] Park SK, Young KD, Kim CG, Sohn SM. The characterization of bacterial community structure in the rhizosphere of watermelon (Citrullus vulgaris SCHARD) using culturebased approaches and terminal fragment length polymorphism (T-RFLP). Journal Applied Soil Ecology. 2006;33:79–86.

[2] Antonius S, Agustiyani D. The properties of soil biochemistry, growth and production of watermelon (Citrullus lanatus) treated with liquid organic bio-fertilizer under field trial in Malinau East Kalimantan. Jurnal Berkala Penelitan Hayati. 2011;16:203–206.

[3] Mohanram S, Kumar P. Rhizosphere microbiome: Revisiting the synergy of plantmicrobe interactions. Annals Microbiology. 2019;69:307-320.

[4] Silitonga DM, Priyani N, Nurwahyuni I. Isolasi dan uji potensi isolat bakteri pelarut fosfat dan bakteri penghasil hormon IAA (indole acetic acid) terhadap pertumbuhan kedelai (Glicine max L.) pada tanah kuning. Medan: Sumatera Utara University; 2008.

[5] Aryantha INP, Lestari DP, Pangesti NPD. Potensi isolat bakteri penghasil IAA dalam peningkatan pertumbuhan kecambah kacang hijau pada kondisi hidroponik. Jurnal Mikrobiologi Indonesia. 2004;9(2):43-46.

[6] Song OK, Lee SJ, Lee YS, Lee SC, Kim KK, Choi YL. Solubilization of insoluble organic phosphatase by Burkholderia cepacia DA23 isolated from cultivated soil. Brazilian Journal of Microbiology. 2008;39(1):151-156.

[7] Khan MS, Zaidi A, Wani PA. Role of phosphate-solubilizing microorganisms in sustainable agriculture: A review. Agronomy for Sustainable Development.2007;27:29–43.

[8] Syers JK, Johnston AE, Curtin D. Efficiency of soil and fertilizer phosphorus use. FAO Fertilizer and Plant Nutrition Bulletin. 2008. 18: 5-10.

[9] Puspitawati MD, Sugiyanta, Anas I. Utilization of phosphate solubilizing microbe in reducing the inorganic-P fertilizer rate on lowland rice. Indonesia Journal of Agronomy. 2013;41(3):188-195.

[10] Kaur G, Reddy MS. Influence of P- solubilizing bacteria on crop yield and soil fertility at multilocational sites. European Journal of Soil Biology. 2014;61:35-40.

[11] Yani R. Karakterisasi kemampuan melarutkan fosfat bakteri pelarut fosfat asal tithonia diversifolia pada media agar ekstrak tanah. Andalas: University Padang; 2011.

[12] Antonius S, Sukmadewi DKT, Suharjono, Dewi TK. Kelimpahan, karakter dan potensi bakteri penghasil hormon tumbuh iaa dan pelarut fosfat pada tanaman cengkeh di Buleleng, Bali. Prosiding Seminar Teknologi Budidaya Cengkeh, Lada dan Pala. Indonesia Agency for Agricultural Research and Development (IAARD) Press. Bogor; 2015.

[13] de Bashan LE, Antoun H, Bashan Y. Involvement of indole -3-acetic acid produced by the growth-promoting bacterium Azospirilium spp. Promoting growth of Chlorella vulgaris. Journal of Phycology of Amerika. 2008;44:938-947.

[14] Inès MT, Yousra, Asma BR, Sana K, Abdennasser H. Multi-traits of non-pathogenic fluorescent pseudomonas and evaluation of their potentiel as biocontrol agents. American Journal of Environmental Science. 2014;10(2):199-209.

[15] Zakharova E, Shcherbakov A, Brudnik V, Skripko N, Bulkhin N, Ignatov V. Biosynthesis of indole-3-acetic acid in Azospirillum brasilense. Insights from quantum chemistry. European Journal Biochemistry. 1999;259:572–576.

[16] Pitcher DG, Sauders NA, Owen RJ. Rapid extraction of bacterial genomic DNA with Guanidium thiocyanate. Letters in Applied Microbiology. 1989; 8:151-156

[17] Badriyah BI, Ardyati T, Widyarti S. Protease activity of bacterial isolates TP5K1 and TP6K5 in tofu solid waste substrate and identification of isolates based on 16S rDNA. International Journal of Biosciences (IJB). 2014;5(6):128-134.

[18] Nita BP, Milind G, Sanggita A, Aparna SG, Balasaheb BK. Optimization of indole 3-acetic acid (IAA) production by Acetobacter diazotrophicus L1 isolated from sugarcane. Journal of Environmental Science. 2011;2(1):307-314.

[19] Suharjono, Sembiring L, Subagja Y, Widayati WE. Phylogenetic systematics of the indigenous strain of Pseudomonas linear alkylbenzene sulphonate-degrading. Biota. 2020;15(1):41-50.

[20] Suharjono. Keanekaragaman dan potensi pseudomonas strain indigenous pendegadrasi surfaktan anionik di ekosistem sungai tercemar deterjen [Dissertation]. Universitas Gadjah Mada. Yogyakarta. 2008.

[21] Dewi TK, Arum ES, Imamuddin H, Antonius S. Karakterisasi mikrobia perakaran (pgpr) agen penting pendukung pupuk organik hayati. Proseding Seminar Nasional Masyarakat Biodiversity Indonesia. 2015;1(2):289-295.

[22] Ginting RCB, Saraswati R, Husen E. Mikroorganisme pelarut fosfat. Balai Besar Litbang, Sumberdaya Lahan Pertanian Badan Penelitian dan Pengembangan Pertanian. Bogor. 2006.

[23] Chen YP, Rekha PD, Arunshen AB, Lai WA, Young CC. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology. 2006;34:33–41.

[24] Diep CN, Hieu TN. Phosphate and potassium solubilizing bacteria from weathered materials of a denatured rock mountain, Ha Tien, Kiên Giang province, Vietnam. American Journal of Life Science. 2013;1(3):88-92.

[25] Viruel E, Erazzus LE, Calsina LM, Ferrero MA, Lucca ME, Sineriz F. Inoculation of maize with phosphate solubilizing bacteria: Effect on plant growth and yield. Journal of Soil Science and Plant Nutrition. 2014;14(4):819-831.

[26] Tamura K, Sakazaki R, Kosako Y, Yoshizaki E. Leclercia adecarboxylata gen. nov., comb. nov., formerly known as Eschericia adecarboxylata. Current Microbiology. 1986;13:179-184.

[27] Song OK, Lee SJ, Lee YS, Lee SC, Kim KK, Choi YL. Solubilization of insoluble organic phosphatase by Burkholderia cepacia DA23 isolated from cultivated soil. Brazilian Journal of Microbiology. 2008. 39(1):151-156.