Native Endomycorrhiza With Tolerance to Heavy Metal Contamination in Organic Culture Media

Authors

  • Muh. Akhsan Akib Universitas Muhammadiyah Parepare, Indonesia
  • Andi Nuddin Universitas Muhammadiyah Parepare, Indonesia
  • Retno Pradityaningsih Environment and Forestry Research and Development Institute of Makassar, Indonesia
  • Sarjiya Antonius Indonesian Institute of Science, Indonesia
  • Tutik Kuswinanti Hasanuddin University, Indonesia
  • Syatrianti Andi Syaiful Hasanuddin University, Indonesia

DOI:

https://doi.org/10.18502/kls.v7i3.11105

Abstract

Endomycorrhizal fungi are spora-carrying organisms that can survive in heavy metalcontaminated environments. The goal of this study was to investigate endomycorrhizal fungi from heavy metal-affected areas and determine an effective mix of organic culture media to increase the number and diameter of endomycorrhizal spores. In Sorowako, Indonesia, endomycorrhizal fungi were isolated from the rhizosphere of: rice husk charcoal, sand, zeolite (KM1); rice husk charcoal, sand, sawdust (KM2); rice husk charcoal, sand, cocopeat (KM3); rice husk charcoal, sand, rice soil (KM4); rice husk charcoal, sand, cold magma (KM5); rice husk charcoal, sand, cold magma (KM6); and rice husk charcoal, sand (KM7). The results of the first phase of research revealed that three endomycorrhizal genera (44.44%–75.86% Acaulospora sp, 9.52%–44.44% Gigaspora sp, and 3.38%–19.05 % Glomus sp) can adapt to and resist conditions contaminated with Hg, Cd, Ni, Pb, As, Cr, Mn, Fe, Cu, Co, and Sn, namely as a carrier medium. It was concluded that a combination of organic media was recommended, but that this must decompose first.

Keywords: Fungi, mycorrhizal, organic waste, rhizosfer

References

Ferrol N, Tamayo E, Vargas P. The heavy metal paradox in arbuscular mycorrhizas: From mechanisms to biotechnological applications. Journal of Experimental Botany. 2016;67(22):6253–6565. https://doi.org/10.1093/jxb/erw403

Bano SA, Ashfaq D. Role of mycorrhiza to reduce heavy metal stress. Natural Science. 2013;5(12):16–20. https://doi.org/10.4236/ns.2013.512a003

Abu-Elsaoud AM, Nafady NA, Abdel-Azeem AM. Arbuscular mycorrhizal strategy for zinc mycoremediation and diminished translocation to shoots and grains in wheat. PLoS One. 2017;12(11):1–21. https://doi.org/10.1371/journal.pone.0188220

Gong X, Tian DQ. Study on the effect mechanism of arbuscular mycorrhiza on the absorption of heavy metal elements in soil by plants. IOP Conference Series: Earth And Environmental Science. 2019;267(5). https://doi.org/10.1088/1755- 1315/267/5/052064

Cely MVT, de Oliveira AG, de Freitas VF, de Luca MB, Barazetti AR, dos Santos IMO, Gionco B, Garcia GV, Prete CEC, Andrade G. Inoculant of arbuscular mycorrhizal fungi (Rhizophagus clarus) increase yield of soybean and cotton under field conditions. Frontiers. In Microbiology. 2016;7(MAY):1–9. https://doi.org/10.3389/fmicb.2016.00720

Coelho IR, Pedone-Bonfim MVL, Silva FSB, Maia LC. Optimization of the production of mycorrhizal inoculum on substrate with organic fertilizer. Brazilian Journal of Microbiology. 2014;45(4):1173–1178. https://doi.org/10.1590/S1517-83822014000400007

Mukhongo RW, Tumuhairwe JB, Ebanyat P, AbdelGadir AH, Thuita M, Masso C. Production and use of arbuscular mycorrhizal fungi inoculum in sub-Saharan Africa: Challenges and ways of improving. Intnational Jornal of Soil Science. 2016;11(3):108– 122. https://doi.org/10.3923/ijss.2016.108.122

Kokkoris V, Hamel C, Hart MM. Mycorrhizal response in crop versus wild plants. PLoS One. 2019;14(8):1–16. https://doi.org/10.1371/journal.pone.0221037

Malusá E, Sas-Paszt L, Ciesielska J. Technologies for beneficial microorganisms inocula used as biofertilizers. Scientific World Journal. 2012. https://doi.org/10.1100/2012/491206

Asmelash F, Bekele T, Birhane E. The potential role of arbuscular mycorrhizal fungi in the restoration of degraded lands. Frontiers in Microbiology. 2016;7( JUL):1–15. https://doi.org/10.3389/fmicb.2016.01095

Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ashraf M, Ahmed N, Zhang L. Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Frontiers in Plant Science. 2019;10(Sep):1–15. https://doi.org/10.3389/fpls.2019.01068

Medina A, Azcón R. Effectiveness of the application of arbuscular mycorrhiza fungi and organic amendments to improve soil quality and plant performance under stress conditions. Journal of Soil Science and Plant Nutrition. 2010;10(3):354–372. https://doi.org/10.4067/S0718-95162010000100009

Krishnamoorthy R, Kim CG, Subramanian P, Kim KY, Selvakumar G, Sa TM. Arbuscular mycorrhizal fungi community structure, abundance and species richness changes in soil by different levels of heavy metal and metalloid concentration. PLoS One. 2015;10(6):1–15. https://doi.org/10.1371/journal.pone.0128784

Brundrett MC, Piché Y, Peterson RL. A new method for observing the morphology of vesicular–arbuscular mycorrhizae. Canadian Journal of Botany. 1984;62(10):2128– 2134. https://doi.org/10.1139/b84-290

Walker C, Mize CW, McNabb HS. Populations of endogonaceous fungi at two locations in central Iowa. Canadian Journal of Botany. 1982;60(12):2518–2529. https://doi.org/10.1139/b82-305

Akib MA. Prosedur rancangan percobaan: Aplication of the model in different environmental conditions. 2nd ed. . Parepare: Lampena Intimedia; 2019.

Hossain MA, Piyatida P, da Silva JAT, Fujita M. Molecular mechanism of heavy metal

toxicity and tolerance in plants: Central role of glutathione in detoxification of reactive

oxygen species and methylglyoxal and in heavy metal chelation. Journal of Botany.

;Cd:1–37. https://doi.org/10.1155/2012/872875

Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. Toxicity,

mechanism and health effects of some heavy metals. Interdisciplinary Toxicology.

;7(2):60–72. https://doi.org/10.2478/intox-2014-0009

Briffa J, Sinagra E, Blundell R. Heavy metal pollution in the environment

and their toxicological effects on humans. Heliyon. 2020;6(9):e04691-e04717.

https://doi.org/10.1016/j.heliyon.2020.e04691

Bellini E, Betti C, di Toppi LS. Responses to cadmium in early-diverging streptophytes

(charophytes and bryophytes): Current views and potential applications. Plants.

;10(770):1–18. https://doi.org/10.1201/9781498710466-9

Yan A, Wang Y, Tan SN, Yusof ML, Ghosh S, Chen Z. Phytoremediation: A promising

approach for revegetation of heavy metal-polluted land. Frontiers in Plant Science.

;11(Apr):1–15. https://doi.org/10.3389/fpls.2020.00359

Hadianur H, Syafruddin S, Kesumawati E. Pengaruh jenis fungi mikoriza arbuscular

terhadap pertumbuhan dan hasil tanaman tomat (Lycopersicum esculentum Mill).

Jurnal Agrista, Universitas Syiah Kuala. 2016;20(3):126–134.

Vieira LC, da Silva DKA, Escobar IEC, da Silva JM, de Moura IA, Oehl F, da Silva

GA. Changes in an arbuscular mycorrhizal fungi community along an environmental

gradient. Plants. 2020;9(1):1–16. https://doi.org/10.3390/plants9010052

Ismael HR, Honore IK, Abaka AS, Philippe K, Clautilde M. Diversity of arbuscular

mycorrhizal fungi (AMF) associated with cotton (Gossypium hirsutum L.) growing

in the far-north region of Cameroon. African Journal of Microbiology Research.

;14(6):211–224. https://doi.org/10.5897/ajmr2020.9325

Berruti A, Lumini E, Balestrini R, Bianciotto V. Arbuscular mycorrhizal fungi as

natural biofertilizers: Let’s benefit from past successes. Frontiers in Microbiology.

;6( Jan):1–13. https://doi.org/10.3389/fmicb.2015.01559

Songachan LS, Kayang H. Diversity of arbuscular mycorrhizal fungi associated with Flemingia vestita Benth. ex Baker. Mycology. 2013;4(2):85–95.

https://doi.org/10.1080/21501203.2013.809026

Wang M, Jiang P. Colonization and diversity of AM fungi by morphological analysis

on medicinal plants in Southeast China. The Scientific World Journal. 2015:2015,ID

, 1-7. https://doi.org/10.1155/2015/753842

Dodd JC, Boddington CL, Rodriguez A, Carmen G-C, Mansur I. Mycelium of

arbuscular mycorrhizal fungi (AMF) from different genera: Form, function and

detection. Plant Soil. 2000;226:131–151. https://doi.org/10.1023/A

Costa FA, Haddad LSA, Kasuya MC, Oton WC, Costa MD, Borges AC. Cultura in vitro

de Gigaspora decipiens e Glomus clarum em raízes transformadas de cenoura:Influência da temperatura e pH. Acta Scientiarm. Agronomy. 2013;35(3):315–323.

https://doi.org/10.4025/actasciagron.v35i3.16581

Castillo CG, Borie F, Oehl F, Sieverding E. Arbuscular mycorrhizal fungi

biodiversity: Prospecting in southern-central zone of Chile. A review. Journal of

Soil Science and Plant Nutrition. 2016;16(2):400–422. https://doi.org/10.4067/S0718-

do Carmo DL, de Lima LB, Silva CA. Soil fertility and electrical conductivity affected

by organic waste rates and nutrient inputs davi lopes. Revista Brasileira de Ciencia

do Solo. 2016;40(1–17). https://doi.org/10.1590/18069657rbcs20150152

Saidi D. Importance and role of cation exchange capacity on the physicals properties

of the cheliff saline soils (Algeria). Procedia Engineering. 2012;33(2011):435–449.

https://doi.org/10.1016/j.proeng.2012.01.1223

Yunan D, Xianliang Q, Xiaochen W. Study on cation exchange capacity of agricultural

soils. IOP Conference Series: Materials Science and Engineering. 2018;392(4):1-5

https://doi.org/10.1088/1757-899X/392/4/042039

Febriani W, Riniarti M, Surnayanti. The aplication of various planting media and spore

inoculums to improve ectomycorrhizal colonization and growth of Shorea javanica.

Jurnal Sylva Lestari. 2017;5(3):87–94. https://doi.org/10.1017/CBO9781107415324.004

Mujica MI, Saez N, Cisternas M, Manzano M, Armesto JJ, Pérez F. Relationship between soil nutrients and mycorrhizal associations of two bipinnula

species (Orchidaceae) from central Chile. Annals of Botany. 2016;118(1):149–158.

https://doi.org/10.1093/aob/mcw082

Nouri E, Breuillin-Sessoms F, Feller U, Reinhardt D. Phosphorus and nitrogen

regulate arbuscular mycorrhizal symbiosis in Petunia hybrida. PLoS One. 2014;9(3):

-14 https://doi.org/10.1371/journal.pone.0090841

Prasad K, Aggarwal A, Yadav K, Tanwar A. Impact of different levels of

superphosphate using arbuscular mycorrhizal fungi and Pseudomonas fluorescens

on Chrysanthemum indicum L. Journal of Soil Science and Plant Nutrition.

;12(3):451–462. https://doi.org/10.4067/s0718-95162012005000007

Beltrano J, Ruscitti M, Arango MC, Ronco M. Effects of arbuscular mycorrhiza

inoculation on plant growth, biological and physiological parameters and mineral

nutrition in pepper grown under different salinity and p levels. Journal of

Soil Science and Plant Nutrition. 2013;13(1):123–141. https://doi.org/10.4067/s0718-

Balzergue C, Chabaud M, Barker DG, Bécard G, Rochange SF. High phosphate

reduces host ability to develop arbuscular mycorrhizal symbiosis without affecting

root calcium spiking responses to the fungus. Frontiers Plant Science. 2013;4(Oct):1–

https://doi.org/10.3389/fpls.2013.00426

Yulius F, Towaha J, Sasmita RRKD. Plant water compost usage as a carrier of

mycorrhizal inoculant from bushy pepper cultivation in the post-tin mining soil.

Industrial Crops Research Journal. 2013;19(1):15–22.

Setiadi AA, Purwantisari S. Viability and number of mycorrhizae product of Ngudi

makmur farmer group in Kataan Village Ngadirejo Temanggung. Jurnal Biologi

Tropika. 2019;2(2):80–84.

Gleixner G. Soil organic matter dynamics: A biological perspective derived from the

use of compound-specific isotopes studies. Ecological Research. 2013;28(5):683–

https://doi.org/10.1007/s11284-012-1022-9

Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva S. The role of soil

microorganisms in plant mineral nutrition - Current knowledge and future directions.

Frontiers in Plant Science. 2017;8(Sep):1–19. https://doi.org/10.3389/fpls.2017.01617

Novak E, de Carvalho LA, Santiago EF, Tomazi M. Changes in the soil structure and

organic matter dynamics under different plant covers. Cerne. 2019;25(2):230–239.

https://doi.org/10.1590/01047760201925022618

Nunes JR, Miras JR, Piñeiro AL, Loures L, Gil C, Coelho J, Loures A. Concentrations

of available heavy metals in Mediterranean agricultural soils and their relation

with some soil selected properties: A case study in typical Mediterranean soils.

Sustainability. 2014;6(12):9124–9138. https://doi.org/10.3390/su6129124

Kim SJ, Eo JK, Lee EH, Park H, Eom AH. Effects of arbuscular mycorrhizal

fungi and soil conditions on crop plant growth. Mycobiology. 2017;45(1):20–24.

https://doi.org/10.5941/MYCO.2017.45.1.20

Goetten LC, Moretto G, Stürmer SL. Influence of arbuscular mycorrhizal fungi

inoculum produced on-farm and phosphorus on growth and nutrition of native

woody plant species from Brazil. Acta Botanica Brasilica. 2016;30(1):9–16.

https://doi.org/10.1590/0102-33062015abb0175

IJdo M, Cranenbrouck S, Declerck S. Methods for large-scale production of AM fungi:

Past, present, and future. Mycorrhiza. 2011;21(1):1–16. https://doi.org/10.1007/s00572-

-0337-z

Chen M, Arato M, Borghi L, Nouri E, Reinhardt D. Beneficial services of arbuscular

mycorrhizal fungi – From ecology to application. Frontiers in Plant Science.

;9(Sep):1–14. https://doi.org/10.3389/fpls.2018.01270

Hao Z, Xie W, Chen B. Arbuscular mycorrhizal symbiosis affects plant

immunity to viral infection and accumulation. Viruses. 2019;11(6):1–12.

https://doi.org/10.3390/v11060534

Ohtomo R, Kobae Y, Morimoto S, Oka N. Infection unit density as an index of infection

potential of arbuscular mycorrhizal fungi. Microbes and Environmets. 2018;33(1):34–

https://doi.org/10.1264/jsme2.ME17098

Garg N, Aggarwal N. Effect of mycorrhizal inoculations on heavy metal uptake

and stress alleviation of Cajanus cajan (L.) Millsp. genotypes grown in cadmium and lead contaminated soils. Plant Growth Regulation. 2012;66(1):9–26.

https://doi.org/10.1007/s10725-011-9624-8

Johri AK, Oelmüller R, Dua M , Yadav V, Kumar M, Tuteja N, Varma A, Bonfante P,

Persson BL, Stroud RM. Fungal association and utilization of phosphate by plants:

Success, limitations, and future prospects. Frontiers in. Microbiology. 2015;6(Oct):1–

https://doi.org/10.3389/fmicb.2015.00984

Wipf D, Krajinski F, van Tuinen D, Recorbet G, Courty PE. Trading on the

arbuscular mycorrhiza market: From arbuscules to common mycorrhizal networks.

New Phytologist. 2019;223(3):1127–1142. https://doi.org/10.1111/nph.15775

Downloads

Published

2022-06-07

How to Cite

Akib, M. A., Nuddin, A., Pradityaningsih, R., Antonius, S., Kuswinanti, T., & Syaiful, S. A. (2022). Native Endomycorrhiza With Tolerance to Heavy Metal Contamination in Organic Culture Media. KnE Life Sciences, 7(3), 34–47. https://doi.org/10.18502/kls.v7i3.11105