Agrobacterium tumefaciens-mediated Transformation of Embryogenic Callus and Somatic Embryos of the Banana cv “Ambon Lumut” (Musa acuminata)


Banana is one of the major fruit crops, though its conventional breeding has limitations, such as sterility and high polyploidy  levels.  Biotechnological  approach  using genetic  transformation  crop for improvement  offers  an alternative  solution.  In  this  study  a  protocol  was developed  for  establishing genetic  transformation  from embryogenic callus and somatic embryos of the banana cv Ambon Lumut . Embryogenic callus was obtained in ID4 medium (MS-based medium) supplemented with 1 mg L-1 IAA, 4 mg L-1 2,4D, and 0.03 g L-1 active charcoal. Embryogenic callus was transferred into liquid mediu m to establish somatic embryos. Embryogenic callus and somatic embryos were used for Agrobacterium tumefaciens-mediated transformation. A. tumefaciens strain A GL1, containing pART-TEST7 p lasmid with gfp gene as a reporter and CaM V35S as a promoter, was used for transformations. The embryogenic callus and somatic embryos were transformed using heat-shock method followed by centrifugation  (2000 rpm) and co-cult ivation in liquid medium containing acetosyringone (100 M) for 3 days. Results of the GFP analysis showed transient expression from gfp gene reporter in transformed embryogenic callus and somatic embryos. Transformation efficiency in somatic embryos (85,9%) was higher than  that in embryogenic callus (32.09%). PCR analysis using CaMV primer showed bands that compatible with CaMV35S promoter at 507 bp. This is a report showing establisment of embryogenic callus and somatic embryo culture transformation by using A. tumefaciens-mediated transformation protocol of the local banana cv Ambon Lumut. This study proved  the huge potential for genetic transformation of banana cv Ambon Lumut for crop improvement, such as pest or disease  resistance and abiotic factor stress tolerance.


Keywords: banana; embryogenic callus; somatic embryos.

[1] Smith, S., 2010. Fairtrade Bananas: A Global Assesment of Impact. Institute of Development Studies. University of Sussex. United Kingdom

[2] Direktorat Budidaya dan Pascapanen Buah., 2012. Pedoman Penanganan Pascapanen Pisang. Direktorat Budidaya dan Pascapanen Buah. Kementerian Pertanian.Jakarta.

[3] Tripathi, J.N., Muwonge, A., and Tripathi, L., 2012. Efficient regeneration and transformation of plantain cv.“Gonja manjaya” (Musa spp. AAB) using embryogenic cell suspensions. In Vitro Cell.Dev.Biol. 48 (2), 216-224.

[4] Tripathi, L., Tripathi, J.N., and Hughes, J.d’A., 2012. Agrobacterium transformation of plantain (Musa spp.) cultivar Agbagba. African Journal of Biotechnology. 4 (12), 1378-1383

[5] Ghosh, A., Ganapathi, T. R., Nath, P., and Bapat, V. A., 2009. Establishment of embryogenic cell suspension cultures and Agrobacterium-mediated transformation in an important Cavendish banana cv. Robusta (AAA). Plant Cell T iss Organ Culture 97, 131–139.

[6] Sutherland, R., 2006. Genetic modification of Cavendish bananas (Musa spp) in South Africa. Thesis. Faculty of Nature and Agricultural Science. University of Pretoria. Pretoria. South Africa.

[7] Khanna, H., Becker, D., Kleidon, J., and Dale, J., 2004. Centrifugation Assisted Agrobacterium tumefaciens mediated Transformation (CAAT) of embryogenic cell suspensions of banana (Musa spp. Cavendish AAA and Lady Finger AAB). Molecular Breeding. 14, 239–252.

[8] Sreeramanan, S., Maziah, M., and Xavier, R., 2009. A protocol for Agrobacteriummediated transformation of banana with a rice chitinase gene. Emirates Journal Food Agriculture. 21 (2), 18-33.

[9] Pei, X. W., Chen, S. K., Wen, R. M., Ye, S., Huang, J. Q., and Zhang, Y. Q., 2005. Creation of transgenic bananas expressing human

[10] Deo, P. C., Tyagi, A. P., T aylor, M., Harding, R., and Becker, D., 2010. Factors affecting somatic embryogenesis and transformation in modern plant breeding. The South Pacific Journal of Natural and Applied Sciences. 28, 27-40.

[11] Sidha, M., Suprasanna, P., Bapat, V.A., Kulkarni, U.G., and Shinde, B. N., 2006. Developing somatic embryogenic culture system and plant regeration in banana. BARC Newsletter. Founder’s day issue special Issue. 285, 153-161.

[12] Escalant, J.V., Teisson, C., and Côte, F., 1994. Amplified somatic embryogenesis from male flower of triploid banana and plantain cultivars (Musa sp.). In Vitro Cell Dev Biol 30:181–186

[13] Khalil, S. M., Cheah, K. T., Perez, E. A., and Gaskill, D. A., 2002. Regeration of banana (Musa spp. AAB cv.Dwarf Brazilian) via secondary somatic embryogenesis. Plant Cell Report. 20, 1128-1134.

[14] Steinbrecher, R.A., 2002. The CaMV 35S Promoter Government and Corporate Scientific Incompetence: Failure to assess the safety of GM crops. Accsessed 22 July 2015.

[15] Zannati, A., 2009. “Sang penyelenggara” itu disebut promotor. BioTrends. 4 (1), 31- 34.

[16] Pérez-Clemente, R. M., Pérez-Sanjuán, A., García-Férriz, L., Beltrán, J. P., and Cañas, L. A., 2004. Transgenic peach plants (Prunus persica L.) produced by genetic transformation of embryo sections using the green fluorescent protein (GFP) as an in vivo marker. Molecular Breeding. 14, 419–427.

[17] El-Shemy, H.A., Khalafalla, M.M., and Ishimoto, M., 2008. The role of Green Fluorescent Protein (GFP) in transgenic plants to reduce gene silencing phenomena. Curr.Issues Mol. Biol. 11 (Suppl. 1), 21–28.

[18] Hofgen, R., and Millmitzer, L., 1988. Storage of competent cells for Agrobacterium transformation. Nucleic Acids Research. 16 (20), 9877.

[19] Apriyani, R. K., 2012. Efisiensi transformasi pada kultur embrio pisang Cavendish (Musa acuminata colla (AAA Group)) melalui Agrobacterium tumefaciens strain AGL1 dan GV3101 yang membawa plasmid pBI121. Thesis. Department of Biotechnology.

[20] Chang, S., and Shu, H., 2013. A method to supress the browning in banana (Musa, AAA) embryogenic callus induced. Research Journal of Biotechnology. 8(4), 63-69.

[21] Wong, W.C., Jalil, M., Ong-Abdullah, M., Othman, R.Y., and Khalid, N., 2006. Enhancement of banana plant regeneration by incorporating

[22] Ikeuchi, M., Sugimoto, K., and Iwase, A., 2013. Plant callus: Mechanisms of induction and repression. The Plant Cell. 25, 3159–3173.

[23] Khalil, S. M., and Elbanna, A. A. M., 2003. Highly efficient somatic embryogenesis and plant regeneration via suspension cultures of banana (Musa spp.). Arab Journal Biotechnology. 7(1), 99-110.

[24] Zimmerman, J.L., 1993. Somatic embryogenesis: a model for early development in higher plants. The Plant Cell. 5, 1411-1423.

[25] Pasternak, T. P., Prinsen, E., Ayaydin, F., Miskolczi, P., Potters, G., Asard, H., Onckelen, H. A. V., Dudits, D. and Fehér, A., 2002. The role of auxin, pH and stress in the activationof embryogenic cell division in leaf protoplast derived cells of Alfalfa. Plant Physiology 129, 807-1809.

[26] Shinoyama, H., Nomura, Y., Tsuchiya, T. and Kozuma, T., 2004. A simple and effecient method for somatic embryogenesis and plant regeneration from leaves of chrysanthemum [Dendranthema x grandiflorum (Ramat.) Kitamura]. Plant Biotechnology. 21, 25-33.

[27] Ganapathi, T.R., Higgs, N.S., Balint-Kurti, P.J., Arntzen, C.J., May, G.D., and Van Eck, J.M., 2001. Agrobacterium-mediated transformation of embryogenic cell suspensions of T he banana cultivar Rasthali (AAB). Plant Cell Reports. 20, 157–162.

[28] Fujimura, T., and Komamine, A., 1979. Synchronization of somatic embryogenesis in a carrot cell suspension culture. Plant Physiology. 64, 162-164.

[29] Wahid, A., Gelani, S., Ashraf, M., and Foolad, M., 2007. Heat tolerance in plants: An overview. Environ. Exp. Bot. 6, 199-223.

[30] Usman, M. G., Rafii, M. Y., Ismail, M. R., Malek, M. A., Latif, M. A., and Oladosu, Y., 2014. Heat shock proteins: functions and response against heat stress in plants. International Journal Of Scientific and T echnology Research. 3(11), 204-218.

[31] Patel, M., Dewey, R. E., and Qu, R., 2013. Enhancing Agrobacterium tumefaciensmediated transformation efficiency of perennial ryegrass and rice using heat and high maltose treatments during bacterial infection. Plant Cell Tissue Organ Culture. 114, 19–29

[32] Li, D. D., Shi, W., and Deng, X. X., 2003. Factors influencing Agrobacterium-mediated embryogenic callus transformation of Valencia sweet orange (Citrus sinensis) containing the pTA29-barnase gene. Tree Physiology. 23, 209–1215

[33] Li, Z. T., Dhekney, S., Dutt, M., Van Aman, M., T attersall, J., Kelley K. T., and Gray D. J., 2006. Optimizing Agrobacterium-mediated transformation of grapevine. In Vitro Cell. Dev. Biol.—Plant. 42: 220–227.

[34] Berensmeier,S., 2006. Magnetic particles for the separationand purification of nucleic acids. Appl. Microbiol.Biotechnol. 73, 495-504

[35] Esser, K.H., Marx, W.H., and Lisowsky, T., 2006. MaxXbond: first regeneration system for DNA binding silica matrices.

[36] Opabode, J. T., 2006. Agrobacterium -mediated transformation of plants: emerging factors that influence efficiency. Biotechnology and Molecular Biology Review. 1: 12-20.

[37] Suzuki, S., Supaibulwatana, K., Mii, M,. and Nakano, M., 2001. Production of transgenic plants of the Liliaceous ornamental plant Agapanthus praecox ssp. Orientalis (Leighton) Leighton via Agrobacterium-mediated transformation of embryogenic calli. Plant Science. 161, 89-97.

[38] Amoah, B. K., Wu, H., Sparks, C. A., and Jones, H. D., 2001. Factors influencing Agrobacterium-mediated transient expression of uidA in wheat inflorescence tissue. Journal of Experimental Botany, 52, 1135-1142.

[39] Uranbey, S., Sevimay, C.S., Kaya, M.D., Ipek, A., Sancak, C., Basalma, D., Er, C., and Ozcan, S., 2005. Influence of different co-cultivation temperature, periods and media on Agrobacterium tumefaciens mediated gene transfer. Biologia Plantarum. 49 (1), 53-57.

[40] Wenck, A. R., Quinn, M., Whetten, R.W., Pullman, G., and Sederoff, R., 1999. High efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda). Plant Mol Biol. 39, 407–416.