The Utilization of Prebiotics, Probiotics, Organic Acids and Antibiotics in Monogastric Animals


The gastrointestinal microbiota is a complex ecosystem made up of a multitude of bacterial species, some of which are potentially pathogenic, while others are considered good for the host. The beneficial microorganisms that live in the hindgut influence gastrointestinal functionality and the host’s health in general.  Nowadays, many dietary supplements are available to be fed to young farm animals such as broilers, turkeys, piglets and calves in order to improve their intestinal health and growth performance. Despite the fact that non-pharmacological feed additives in general do not reach the efficacy of antibiotics as growth promoters, the proper choice and use of a dietary supplement may improve livestock productivity. Nevertheless, it has to be considered that dietary supplements usually increase the feed price, which means that the cost-benefit ratio of feed additives should always be determined.


Keywords: gastrointestinal microbiota; dietary supplements; livestock productivity

[1] Roberfroid M.B., Bornet F., Bouley C., Cummings J.H. 1995. Colonic microflora: nutrition and health. Nutr. Rev. 53:127-130.

[2] Gaggìa F., Mattarelli P., Biavati B. 2010. Probiotics and prebiotics in animal feeding for safe food production. J. Food Microbiol. 141:S15-S28.

[3] Tomomatsu H. 1994. Health effects of oligosaccharides. Food Technol. 48:61-65.

[4] Liévin-Le Moal V., Servin A.L. 2006. The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: mucins, antimicrobial peptides, and microbiota. Clin. Microbiol. Rev. 19:315-337.

[5] Howard M.D., Gordon D.T., Pace L.W., Garleb K.A., Kerley M.S. 1995. Effects of dietary supplementation with fructooligosaccharides on colonic microbiota populations and epithelial cell proliferation in neonatal pigs. J. Pediatr. Gastr. Nutr. 21:297-303.

[6] Round J.L., Mazmanian S.K. 2009. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9:313-323.

[7] Cerf-Bensussan N., Gaboriau-Routhiau V. 2010. The immune system and the gut microbiota: friends or foes? Nat. Rev. Immunol. 10:735-744.

[8] Leblanc J.G., Milani C., Savoy De Giori G., Sesma F., Van Sinderen D., Ventura M. 2012. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr. Opin. Biotec.

[9] O’Hara A.M., Shanahan F. 2007. Gut microbiota: mining for therapeutic potential. Clin. Gastroenterol. H. 5:274-284.

[10] Stokstad E.L.R., Jukes T.H. 1949. Proceedings of Society of Biological and Experimental Medicine 73:523.

[11] Stokstad E.L.R., Jukes T.H. 1950. The growth promoting effect of aureomycin on turkey poults. Poultry Sci. 29:611.

[12] Jukes T.H., Stokstad E.L.R., Taylor R.R., Cunha T.J., Edwards H.M., Meadows G.B., 1950. Growth promoting effect of aureomycin on pigs. Arch. Biochem. 26, 324.

[13] Stokstad E.L.R. 1954. Antibiotics in animal nutrition. Physiol. Rev. 34, 25.

[14] Hays V.W., 1969. Biological basis for the use of antibiotics in livestock production. The use of drugs in animal feeds. National Academy of Sciences, Publ. 1697.

[15] Levy S.B. 2002. The antibiotic paradox: how the misuse of antibiotics destroys their curative powers, 2nd ed. Perseus Publishing, Cambridge, MA.

[16] Roberfroid M.B. 2007. Prebiotics: the concept revisited. J. Nutr. 137:830S-837S.

[17] Callaway T.R., Edrington T.S., Harvey R.B., Anderson R.C., Nisbet D.J. 2012. Prebiotics in food animals, a potential to reduce foodborne pathogens and disease. Rom. Biotech. Lett. 17:7808-7816.

[18] Howard M.D., Kerley M.S., Sundvold G.D., Reinhart G.A. 2000. Source of dietary fiber fed to dogs affects nitrogen and energy metabolism and intestinal microflora populations. Nutr. Res. 20:1473-1484.

[19] Terada A., Hara H., Oishi T., Matsui T., Mitsuoka T., Nakajyo S., Fujimori I, Hara K. 1992. Effect of dietary lactosucrose on faecal flora and faecal metabolites of dogs. Microb. Ecol. Health D. 5:87-92.

[20] Meyer D. 2008. Prebiotic dietary fibres and the immune system. Agro-Food Ind. Hi-Tech. 19:12-15.

[21] Xu Z.R., Hu C.H., Xia M.S., Zhan X.A., Wang M.Q. 2003. Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poult. Sci. 82:1030-1036.

[22] Català-Gregori P., Mallet S., Travel A., Orengo J., Lessire M. 2008. Efficiency of a prebiotic and a plant extract alone or in combination on broiler performance and intestinal physiology. Can. J. Anim. Sci. 88:623-629.

[23] Hajati H., Rezaei M. 2010. The application of prebiotics in poultry production. Int. J. Poultry Sci. 9:298-304.

[24] Kim G.B., Seo Y.M., Kim C.H., Paik I.K. 2011. Effect of dietary prebiotic supplementation on the performance, intestinal microflora, and immune response of broilers. Poultry Sci. 90:75-82.

[25] Bailey J.S., Blankenship L.C., Cox N.A. 1991. Effect of fructooligosaccharide on Salmonella colonization of the chicken intestine. Poult. Sci. 70:2433-2438.

[26] Fukata T., Sasai K., Miyamoto T., Baba E. 1999. Inhibitory effects of competitive exclusion and fructooligosaccharide, singly and in combination, on Salmonella colonization of chicks. J. Food Prot. 62:229-233.

[27] Tzortzis G., Goulas A.K., Gee J.M., Gibson G.R. 2005. A novel galactooligosaccharide mixture increases the bifidobacterial population numbers in a continuous in vitro fermentation system and in the proximal colonic contents of pigs. J. Nutr. 135:1726- 1731.

[28] Uyeno Y., Shigemori S., Shimosato T. 2015. Effect of probiotics/prebiotics on cattle health and productivity. Microbes Environ. doi:10.1264/jsme2.ME14176.

[29] Fuller R. 1989. Probiotics in man and animals. J. Appl. Bacteriol. 66:365-378.

[30] Gaggìa F., Mattarelli P., Biavati B. 2010. Probiotics and prebiotics in animal feeding for safe food production. J. Food Microbiol. 141:S15-S28.

[31] Servin A.L. 2004. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol. Rev. 28:405-440.

[32] Mazmanian S.K., Round J.L., Kasper D. 2008. A microbial symbiosis factor prevents
inflammatory disease. Nature 453:620-625.

[33] Gillor O., Etzion A., Riley M.A. 2008. The dual role of bacteriocins as anti- and probiotics. Appl. Microbiol. Biot. 81:591-606.

[34] La Ragione R.M., Woodward M.J. 2003. Competitive exclusion by Bacillus subtilis spores of Salmonella enterica serotype Enteritidis and Clostridium perfringens in young chickens. Vet. Microbiol. 94:245-256.

[35] Salzman N.H., Ghosh D., Huttner K.M., Paterson Y., Bevins C.L. 2003. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 422:522-526.

[36] Wolfenden A.D., Vicente J.L., Higgins J.P., Andreatti R., Higgins S.E., Hargis B.M., Tellez G. 2007. Effect of organic acids and probiotics on Salmonella Enteritidis infection in broiler chickens. Int. J. Poult. Sci. 6:403-405.

[37] Menconi A., Wolfenden A.D., Shivaramaiah S., Terraes J.C., Urbano T., Kuttel J., Kremer C., Hargis B.M., Tellez G. 2011. Effect of lactic acid bacteria probiotic culture for the treatment of Salmonella enterica serovar Heidelberg in neonatal broiler chickens and turkey poults. Poultry Sci. 90:561-565.

[38] Dhama K., Singh S.D. 2010. Probiotics improving poultry health and production: an overview. Poultry Punch 26:41.

[39] Salarmoini M., Fooladi M.H. 2011. Efficacy of Lactobacillus acidophilus as probiotic to improve broiler chicks performance. J. Agr. Sci. Tech. 13:165-172.

[40] Saadia M.H., Soliman N.K. 2010. Effect of probiotic (Saccharomyces cerevisiae) adding to diets on intestinal microflora and performance of hy-line layers hens. J. Am. Sci. 6:159-169.

[41] Alkhalf A., Alhaj M., Al-Homidan I. 2010. Influence of probiotic supplementation on immune response of broiler chicks. Egypt. Poult. Sci. 30:271-280.

[42] Vicente J., Wolfenden A., Torres-Rodriguez A., Higgins S., Tellez G., Hargis B. 2007. Effect of a Lactobacillus species-based probiotic and dietary lactose prebiotic on turkey poult performance with or without Salmonella enteritidis challenge. J. Appl. Poult. Res. 16:361-364.

[43] Johannsen S.A., Griffith R.W., Wesley I.V., Scanes C.G. 2004. Salmonella enterica serovar typhimurium colonization of the crop in the domestic turkey: influence of probiotic and prebiotic treatment (Lactobacillus acidophilus and lactose). Avian Dis. 48:279-286.

[44] Estrada A., Wilkie D.C., Drew M. 2001. Administration of Bifidobacterium bifidum to chicken broilers reduces the number of carcass condemnation for cellulites at the abattoir. J. Appl. Poultry Res. 10:329-334.

[45] O’Dea E.E., Fasenko G.M., Allison G.E., Korver D.R., Tannock G.W., Guan L.L. 2006. Investigating the effects of commercial probiotics on broiler chick quality and production efficiency. Poultry Sci. 85:1855-1863.

[46] Chu G.M., Lee S.J., Jeong H.S., Lee S.S. 2011. Efficacy of probiotics from anaerobic microflora with prebiotics on growth performance and noxious gas emission in growing pigs. Anim. Sci. J. 82:282-290.

[47] Kenny M., Smidt H., Mengheri E., Miller B. 2011. Probiotics – do they have a role in the pig industry? Animal 5:462-470.

[48] Russell J.B., Diez-Gonzalez F. 1998. The effects of fermentation acids on bacterial growth. Adv. Microb. Physiol. 39:205-234.

[49] Huyghebaert G., Ducatelle R., Van Immerseel F. 2011. An update on alternatives to antimicrobial growth promoters for broilers. Vet. J. 187:182-188.

[50] Van Immerseel F., Russell J.B., Flythe M.D., Gantois I., Timbermont L., Pasmans F., Haesebrouck F., Ducatelle R. 2006. The use of organic acids to combat Salmonella in poultry: a mechanistic explanation of the efficacy. Avian Pathol. 35:182-188.

[51] Chowdhury R., Islam K.M.S., Khan M.J., Karim M.R., Haque M.N., Khatun M., Pesti G.M. 2009. Effect of citric acid, avilamycin, and their combination on the performance, tibia ash, and immune status of broilers. Poult. Sci. 88:1616-1622.

[52] Biggs P., Parsons C.M. 2008. The effects of several organic acids on growth performance, nutrient digestibilities, and cecal microbial populations in young chicks. Poult. Sci. 87: 2581-2589.

[53] Panda A.K., Raju M.V.L.N., Rama Rao S.V., Shyam Sunder G., Reddy M.R. 2009. Effect of graded levels of formic acid on gut microflora count, serum biochemical parameters, performance, and carcass yield of broiler chickens. Indian J. Anim. Sci. 79:1165-1168.

[54] Mahdavi R., Torki M. 2009. Study on period of dietary protected butyric acid on performance, carcass characteristics, serum metabolite levels and humoral immune response of broiler chickens. J. Anim. Vet. Adv. 8:1702-1709.

[55] Partanen K.H., Mroz Z. 1999. Organic acids for performance enhancement in pig diets. Nutr. Res. Rev. 12:117-145.

[56] Roth F.X., Kirchgessner M. 1998. Organic acids as feed additives for young pigs: Nutritional and gastrointestinal effects. J. Anim. Feed Sci. 7 (Suppl. 1):25-33.

[57] Biagi G., Piva A., Moschini M., Vezzali E., Roth F.X. 2006. Effect of gluconic acid on piglet growth performance, intestinal microflora, and intestinal wall morphology. J. Anim. Sci. 84:370-378.