Features of the Bioconversion of Pentacyclic Triterpenoid Oleanolic Acid Using Rhodococcus Actinobacteria


The ability of actinobacteria of the genus Rhodococcus to transform oleanolic acid (OA), a plant pentacyclic triterpenoid, was shown for the first time using bioresources of the Regional Specialized Collection of AlkanotrophicMicroorganisms (IEGM; WDCM #768;www.iegmcol.ru). The most promising strains (R.opacus IEGM 488 and R.rhodochrousIEGM 285) were selected, and these catalyzed80% bioconversion of OA (0.5 g/L) in the presence of n-hexadecane (0.1% v/v) for seven days. The process of OA bioconversion was accompanied by a gradual decrease in the culture medium pH. Adaptive responses of bacterial cells to the OA effects included the formation of compact cellular aggregates, a marked change in the surface-to-volume ratio of cells, and a significant increase in the Zeta potential values. The results demonstrated that the process of OA bioconversion was catalyzed by membrane-bound enzyme complexes. Participation of cytochrome P450-dependent monooxygenases in the oxidation of the OA moleculewas confirmedusing specific inhibitors. The obtained data expand our knowledge on the catalytic activity of actinobacteria of the genus Rhodococcus and their possible use as biocatalysts for the bioconversion of complex hydrophobic compounds. The results can also be used inthe searchfor promising OA derivatives to be used in the synthesis of biologically active agents.

Keywords: bioconversion, oleanolic acid, Rhodococcus, biologically active compounds

[1] Calixto JB. The role of natural products in modern drug discovery. Anais da Academia Brasileira de Ciencias. 2019;91:1–7. doi: 10.1590/0001-3765201920190105.

[2] Nursid M, Marraskuranto E, Chasanah E. Cytotoxicity and apoptosis induction of sea cucumber Holothuria atra extracts. Pharmacognosy Research. 2019;11(1):41–46. doi: 10.4103/pr.pr.

[3] Tian M, Zhao P, Li G, Zhang K. In depth natural product discovery from the Basidiomycetes stereum species. Microorganisms. 2020;8:1049-1049. doi: 10.1007/s001289900645

[4] Chianese G, Golin-Pacheco SD, Taglialatela-Scafati O, et al.Bioactive triterpenoids from the caffeine-rich plants guayusa and maté. Food Research International. 2019;115:504–510. doi: 10.1016/j.foodres.2018.10.005.

[5] Sit NW, Chan YS, Lai SC et al. In vitro antidermatophytic activity and cytotoxicity of extracts derived from medicinal plants and marine algae. Journal de Mycologie Medicale. 2018;28(3):561–567. doi: 10.1016/j.mycmed.2018.07.001.

[6] Romero, Concepción & Garcia, Aranzazu & Medina, Eduardo & Ruiz-Méndez, M. Victoria & Castro, Antonio & Brenes, Manuel. Triterpenic acids in table olives. Food Chemistry. 2010;118(3):670–674. doi: 10.1016/j.foodchem.2009.05.037.

[7] Guinda, Ángeles & Rada, Mirela & Delgado, Teresa & Gutiérrez-Adánez, Pilar & Castellano, Jose. Pentacyclic triterpenoids from olive fruit and leaf. Journal of Agricultural and Food Chemistry. 2010;58(17):9685–9691. doi: 10.1021/jf102039t.

[8] Wiemann J, Heller L, Csuk R. Targeting cancer cells with oleanolic and ursolic acid derived hydroxamates. Bioorganic and Medicinal Chemistry Letters. 2016;26(3):907– 909. doi: 10.1016/j.bmcl.2015.12.064.

[9] Li R. Huang, Heng Luo, Xiao S. Yang et al. Enhancement of anti-bacterial and antitumor activities of pentacyclic triterpenes by introducing exocyclic α,β-unsaturated ketone moiety in ring A. Medicinal Chemistry Research. 2014;23(11):4631–4641. doi: 10.1007/s00044-014-1031-z.

[10] Kang H, Ku SK, Kim J, et al. Anti-vascular inflammatory effects of pentacyclic triterpenoids from Astilbe rivularis in vitro and in vivo. Chemico-Biological Interactions. 2016;261:127–138. doi: 10.1016/j.cbi.2016.11.014.

[11] Yu F, Wang Q, Zhang Z, et al. Development of oleanane-type triterpenes as a new class of HCV entry inhibitors. Journal of Medicinal Chemistry. 2013;56(11):4300–4319. doi: 10.1021/jm301910a.

[12] Zou LW, Dou TY, Wang P, et al. Structure-activity relationships of pentacyclic triterpenoids as potent and selective inhibitors against human carboxylesterase 1. Frontiers in Pharmacology. 2017;8:1–12, doi: 10.3389/fphar.2017.00435.

[13] Chouaïb, Karim & Romdhane, Anis & Delemasure, Stéphanie Regiospecific synthesis by copper- and ruthenium-catalyzed azide–alkyne 1,3-dipolar cycloaddition, anticancer and anti-inflammatory activities of oleanolic acid triazole derivatives. Arabian Journal of Chemistry. 2019;12(8):3732–3742. doi: 10.1016/j.arabjc.2015.12.013.

[14] Borkova, L et al. (2017) Synthesis and cytotoxic activity of triterpenoid thiazoles derived from allobetulin, methyl betulonate, methyl oleanonate, and oleanonic acid. CHEMMEDCHEM: CHEMISTRY ENABLING DRUG DISCOVERY.2017;12(5):390–398. doi: 10.1002/cmdc.201600626.

[15] Shah SA, Tan HL, Sultan S et al. Microbial-catalyzed biotransformation of multifunctional triterpenoids derived from phytonutrients. International Journal of Molecular Sciences. 2014;15(7):12027–12060, doi: 10.3390/ijms150712027.

[16] Martinez A, Rivas F, Perojil A, Parra A, Garcia-Granados A, Fernandez-Vivas A. Biotransformation of oleanolic and maslinic acids by Rhizomucor miehei. Phytochemistry. 2013;94:229–237. doi: 10.1016/j.phytochem.2013.05.011.

[17] Gong T, Zheng L, Zhen X, He HX, Zhu HX, Zhu P. Microbial transformation of oleanolic acid by Trichothecium roseum. Journal of Asian Natural Products Research. 2014;16(4):383–386. doi: 10.1080/10286020.2014.884564.

[18] Yan S, Lin H, Huang H, Yang M, Xu B, Chen G Microbial hydroxylation and glycosidation of oleanolic acid by Circinella muscae and their anti-inflammatory activities. Natural Product Research. 2018;6419:1–7. doi: 10.1080/14786419.2018.1477150.

[19] Ludwig, Benjamin & Geib, Doris & Haas, Christiane et al. Whole-cell biotransformation of oleanolic acid by free and immobilized cells of Nocardia iowensis: Characterization of new metabolites. Engineering in Life Science. 2015;15:108–115. doi: 10.1002/elsc.201400121.

[20] Xu, Shaohua & Wang, Weiwei & Zhang, Chao & Liu, Xiu-Feng & Yu, Bo-Yang & Zhang, Jian. Site-selective oxidation of unactivated C–H sp3 bonds of oleanane triterpenes by Streptomyces griseus ATCC 13273. Tetrahedron. 2017;73(21):3086–3092. doi: 10.1016/j.tet.2017.04.036.

[21] Martínková L, Uhnáková B, Pátek M, Nesvera J, Kren V. Biodegradation potential of the genus Rhodococcus. Environment International. 2009;35(1):162–177. doi: 10.1016/j.envint.2008.07.018.

[22] Kuyukina MS, Ivshina IB. Biology of Rhodococcus. Alvarez HM, editor.Berlin: Springer; 2010.Rhodococcus biosurfactants: Biosynthesis, properties and potential applications.

[23] Ivshina IB, Kuyukina MS, Krivoruchko AV. Microbial resources: From functional existence in nature to applications.Kurtboke I, editor. London: Elsevier Inc.; 2017. Hydrocarbon-oxidizing bacteria and their potential in eco-biotechnology and bioremediation.

[24] Tarasova EV, Grishko VV, Ivshina IB. Cell adaptations of Rhodococcus rhodochrous IEGM 66 to betulin biotransformation. Process Biochemistry. 2017;52:1–9. doi: 10.1016/j.procbio.2016.10.003.

[25] Grishko VV, Tarasova EV, Ivshina IB. Biotransformation of betulin to betulone by growing and resting cells of the actinobacterium Rhodococcus rhodochrous IEGM 66. Process Biochemistry. 2013;48(11):1640–1644. doi: 10.1016/j.procbio.2013.08.012.

[26] Yoshida, Keishiro & Furihata, Kazuo & Habe, Hiroshi & Yamane, Hisakazu & Omori, Toshio. Microbial transformation of 18β-glycyrrhetinic acid by Sphingomonas paucimobilis strain G5. Biotechnology Letters. 2001;23:1619–1624.

[27] Neumann G, Veeranagouda Y, Karegoudar TB, et al. Cells of Pseudomonas putida and Enterobacter sp. adapt to toxic organic compounds by increasing their size. Extremophiles. 2005;9(2):163–168. doi: 10.1007/s00792-005-0431-x.

[28] Strain Rhodococcus opacus IEGM 488. Iegmcol.ru 2003/01/01. Available from: http://www.iegmcol.ru/strains/rhodoc/opac/r_opac488.html.

[29] Strain Rhodococcus rhodochrous IEGM 66. Iegmcol.ru. 2003/01/01. Available from: http://www.iegmcol.ru/strains/rhodoc/rhodoch/r_rhod66.html.

[30] Cheremnykh KM, Luchnikova NA, Grishko VV, Ivshina IB Bioconversion of ecotoxic dehydroabietic acid using Rhodococcus actinobacteria. Journal of Hazardous Materials. 2018;346:103–112. doi: 10.1016/j.jhazmat.2017.12.025.

[31] Halder, Suman & Yadav, Kirendra & Sarkar, Ratul et al Alteration of Zeta potential and membrane permeability in bacteria: A study with cationic agents. SpringerPlus. 2015;4(1):1–14. doi: 10.1186/s40064-015-1476-7.

[32] Bastos DZ, Pimentel IC, de Jesus DA, de Oliveira BH Biotransformation of betulinic and betulonic acids by fungi. Phytochemistry. 2007;68(6):834–839. doi: 10.1016/j.phytochem.2006.12.007.

[33] Leipold, Doris & Wünsch, Gesine & Schmidt, Melanie et al. Biosynthesis of ursolic acid derivatives by microbial metabolism of ursolic acid with Nocardia sp. strainsproposal of new biosynthetic pathways. Process Biochemistry. 2010;45(7):1043–1051. doi: 10.1016/j.procbio.2010.03.013.

[34] Fujii Y, Hirosue S, Fujii T, Matsumoto N, Agematu H, Arisawa A Hydroxylation of oleanolic acid to queretaroic acid by cytochrome P450 from Nonomuraea recticatena. Bioscience, Biotechnology, and Biochemistry. 2006;70(9):2299–2302. doi: 10.1271/bbb.60126.

[35] Schmitz D, Zapp J, Bernhardt R. Hydroxylation of the triterpenoid dipterocarpol with CYP106A2 from Bacillus megaterium. Federation of European Biochemical Societies Journal. 2012;279:1663–1674. doi: 10.1111/j.1742-4658.2012.08503.x.