Constructive Retrofit Guidelines for Social Housing Buildings in Beira Interior Region, Portugal, for Actual and Future Climate Scenarios


An important part of the Portuguese social housing building stock is unappropriated regarding the actual regulation and resident’s comfort requirements, which are expected to increase due to the impact of climate change. Beira Interior region in Portugal is one of the fewest Portuguese zones that presents both winter and summer most severe scenarios in many places. Future climate scenario projections for this region indicate more aggressive summer seasons, with the occurrence of heat waves becoming more significant, while winter seasons are expected to maintain a rigorous profile. The present article, which reflects the work still in progress, presents the development of a proper methodology for social housing retrofit in Beira Interior region for present and projected climate scenarios under Portuguese realistic cooling/heating habits of occupants. It focuses on monitoring internal temperatures in order to understand actual dwellings performance considering occupant behaviour, along with the construction of a dynamical multi-zone model for dynamical thermal simulations. Comparing the results with appropriate thermal comfort standards, proper retrofit measures will be identified and tested. Therefore, it is aimed the accomplishment of constructive retrofit guidelines, which are expected to be valuable tools for stakeholders interested in the retrofit of the Portuguese social housing stock.

[1] Instituto Nacional de Estatística (2012). Censos 2011, Lisbon Instituto Nacional de Estatística.

[2] V. Matos (2018). Habitação coletiva de promoção cooperativa, critérios de autenticidade na sua conservação e reabilitação. Phd Thesis in Architecture. Faculdade de Arquitetura da Universidade de Lisboa, Lisbon.

[3] S. Magalhães, V. Freitas (2017). A complementary approach for energy efficiency and comfort evaluation of renovated dwellings in Southern Europe. Energy Procedia 132, pp. 909-914.

[4] S. Magalhães, V. Freitas, J. Alexandre (2018). Etiqueta energética vs. índice de desconforto passivo em habitações existentes. Proceedings of Construção 2018, 266-275. Porto: Faculdade de Engenharia da UP.

[5] A. Curado (2014), Conforto térmico e eficiência energética nos edifícios de habitação social reabilitados. Phd Thesis in Civil Engeneering. Faculdade de Engenharia da Universidade do Porto, Porto.

[6] EEA (2008). Impacts of Europe’s changing climate – 2008 indicator-based assessment (Report No.4/2008). Copenhagen: EEA.

[7] IPCC (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. Geneva: IPCC.

[8] Portal do Clima [Internet], 2015 [cited 2019 May]. Available from:

[9] R. Aguiar, M. Oliveira, H. Gonçalves (2002). Climate change impacts on the thermal performance of Portuguese buildings. Results of the SIAM study. Build Serv Eng Res Technol 23 (4), pp. 223-231.

[10] F. Santos, K. Forbes, R. Moita (2002). Climate Change in Portugal. Scenarios, Impacts and Adaptation Measures - SIAM Project, Lisbon: Gradiva.

[11] M. Freire (2009). Aspectos da qualidade arquitectónica no Bairro da Estação – 2ª Fase, Covilhã. Master Thesis in Civil Engineering. Universidade da Beira Interior, Covilhã.

[12] S. Attia, P. Eleftheriou, F. Xeni, et al. (2017). Overview and future challenges of nearly zero energy buildings (nZEB) design in Southern Europe. Energy Build 155, pp. 439-458.

[13] Despacho (extrato) n∘ 15793-F/2013 - Parâmetros para o zonamento climático e respetivos dados. Portugal: Diário da República, 2ª série – nº 234, 2013.

[14] Resolução n.º 48/2015 - Estratégia Nacional para a Habitação (ENH) para o período de 2015 -2031. Portugal: Diário da República, 1ª série – nº 136, 2015.

[15] I. Andresen, B. Matusiak, P. Pracki, et al. (2014). Sustainable Rehabilitation of Buildings: a state-of-theart, Trondheim: SINTEF Civil and Environmental Engineering.

[16] J. Douglas (2002). Building Adaptation, Edinburgh: Butterworth−Heinemann.

[17] R. Barbosa, R. Vicente, R. Santos (2015). Climate change and thermal comfort in Southern Europe housing: A case study from Lisbon. Build Environ 92, pp. 440-451.

[18] Portal da Habitação [Internet], 2019 [cited 2019 May]. Available from:

[19] Agência Portuguesa do Ambiente (2015). Estratégia Nacional de Adaptação às Alterações Climáticas (ENAAC 2020). Lisbon: Agência Portuguesa do Ambiente.

[20] L. Bragança, M.D. Pinheiro (2007). Portugal SB07: Sustainable Construction, Materials and Practices, Amsterdam: IOS Press.

[21] S. Roaf, D. Crichton, F. Nicol (2009). Adapting buildings and cities for climate change: A 21st Century Survival Guide, Kidlington: Architectural Press.

[22] J. Aguiar, A. Pinho, J. Vasconcelos Paiva (2006). Guia Técnico de Reabilitação Habitacional, Lisbon: LNEC.

[23] P. Wilde, Y. Rafiq, M. Beck (2008). Uncertainties in predicting the impact of climate change on thermal performance of domestic buildings in the UK. Build Serv Eng Res Technol 29, pp. 7-26.

[24] M. Gaterell, M. McEvoy (2005). The impact of climate change uncertainties on the performance of energy efficiency measures applied to dwellings. Energy Build 37, pp. 982-995.

[25] J. Ortiz, A. Fonseca, J. Salom, et al. (2016). Comfort and economic criteria for selecting passive measures for the energy refurbishment of residential buildings in Catalonia. Energy Build 110, pp. 195-210.

[26] J. Flores (2013). The investigation of energy efficiency measures in the traditional buildings in Oporto World Heritage Site. PhD Thesis in Architecture. Oxford Brookes University, Oxford.

[27] C. Alonso, I. Oteiza, F. Martín-Consuegra, et al. (2017). Methodological proposal for monitoring energy refurbishment. Indoor environmental quality in two case studies of social housing in Madrid, Spain. Energy Build 155, pp. 492-502.

[28] I. Oteiza, C. Alonso, F. Martín-Consuegra, et al. (2018). Energy Retrofitting for Social Housing by Improving the Building Envelope: Madrid, 1939-1979. In P. Mercader-Moyano – The sustainable renovation of buildings and neighbourhoods (pp. 3-32). Bentham Science Publishers eBooks.

[29] A. Boeri, L. Gabrielli, D. Longo (2011). Evaluation and feasibility study of retrofitting interventions on social housing in Italy. Procedia Eng. 21, pp. 1161-1168.

[30] M. Martínez-Hervas, J.J. Sendra, R. Suárez (2018). Towards a sustainable retrofitting plan for social housing in Mediterranean Europe. In P. Mercader-Moyano – The sustainable renovation of buildings and neighbourhoods (pp. 147-164). Bentham Science Publishers eBooks.

[31] EU Mies Award [Internet], 2019 [cited 2019 May]. Available from:

[32] S. Moreno (2017). Rehabilitación energética de edificios residenciales en España y objetivo europeo 2050. Phd Thesis in Project and Systems Engineering. Universitat Politècnica de Catalunya, Barcelona.

[33] A. Sdei (2015). Climate change adaptation of retrofitted social housing in the South-East of England. PhD Thesis. University of Brighton, Brighton.

[34] DOE: Building Technologies Program – EnergyPlus [Internet], 2011 [cited 2019 May]. Available from:

[35] DB, Design Builder Software [Internet], 2014 [cited 2019 May]. Available from:

[36] S. Belcher, J. Hacker, D. Powell (2005). Constructing design weather data for future climates. Build Serv Eng Res Technol 26 (1), pp. 49-61.

[37] University of Southampton: Sustainable Energy Research Group – CCWorldWeatherGen [Internet], 2013 [cited 2019 May]. Available from:

[38] M. Jentsch, P. James, L. Bourikas, et al. (2013). Transforming existing weather data for worldwide locations to enable energy and building performance simulation under future climates. Renewable Energy 55, pp. 514-524.