Development of Porous Tungsten Mud Waste-based Alkali-activated Foams with Low Thermal Conductivity

Abstract

Aim of this study was to produce alkali-activated foams with low thermal conductivity. Different precursors’ maximum particles sizes of 150μm, 300μm, and 500μm using a blend of 70% tungsten mining waste mud (TWM), 20% grounded waste glass (WG) and 10 % metakaolin (MK) with sodium silicate (SS) and sodium hydroxide (SH) as original material. Aluminium powder (Al) was used as a blowing agent and added first to the dry mix by changing content from 0.1g to 0.5g. Precursors and activators were mixed together to produce a homogeneous mixture, which was placed into a mould (100x200x60 mm3), and cured in the oven at 60∘C for 24 hours. The effect on foaming properties of different precursors maximum particles sizes were studied. The AAFs exhibited 28 day compressive strengths ranging from 2.28 to 16.1 MPa with the different densities from 913 to 1647 kg/m3 achieved through alteration of the foaming content. The thermal conductivity of AAFs was in the range 0.21– 0.33 W/m*K. Open celled hardened of the AAFs with 0.5g Al shows a high porosity of 58% with the mix made with 500μm. Therefore, tungsten mining waste-based alkali-activated foams shows a promise as thermal insulation material in some situations.

References
[1] A.I. Badanoiu, T.H.A. Al Saadi, S. Stoleriu, G. Voicu, Preparation and characterization of foamed geopolymers from waste glass and red mud, Constr. Build. Mater. 84 (2015) 284–293. doi:10.1016/j.conbuildmat.2015.03.004

[2] E. Ul Haq, S. Kunjalukkal Padmanabhan, A. Licciulli, Microwave synthesis of thermal insulating foams from coal derived bottom ash, Fuel Process. Technol. 130 (2015) 263–267. doi:10.1016/j.fuproc.2014.10.017

[3] Z. Zhang, J.L. Provis, A. Reid, H. Wang, Geopolymer foam concrete: An emerging material for sustainable construction, Constr. Build. Mater. 56 (2014) 113–127. doi:10.1016/j.conbuildmat.2014.01.081

[4] I. Beghoura, J. Castro-Gomes1, H. Ihsan, N. Estrada, Feasibility of alkali-activated mining waste foamed materialsincorporating expanded granulated cork, Min. Sci. 24 (2017) 7–28. doi:10.5277/msc172401

[5] G. Kastiukas, P. Sciences, Alkali activated binders valorised from tungsten mining waste: materials design, preparation, properties and appications, 2017.

[6] P.V.K.Æ.G.Y. Kovalchuk, Directed synthesis of alkaline aluminosilicate minerals in a geocement matrix, (2007) 2944–2952. doi:10.1007/s10853-006-0528-3.

[7] P. Krivenko, G. Kovalchuk, Achieving a heat resistance of cellular concrete based on alkali activated fly ash cements, (2015) 599–606. doi:10.1617/s11527-014-0479-0

[8] R. Arellano Aguilar, O. Burciaga Díaz, J.I. Escalante García, Lightweight concretes of activated metakaolin-fly ash binders, with blast furnace slag aggregates, Constr. Build. Mater. 24 (2010) 1166–1175. doi:10.1016/j.conbuildmat.2009.12.024.

[9] N. Narayanan, K. Ramamurthy, Structure and properties of aerated concrete: a review, 22 (2000) 321–329.

[10] E.P. Kearsley, P.J. Wainwright, The effect of high fly ash content on the compressive strength of foamed concrete, 31 (2001) 0–7.

[11] Joseph Davidovits, Geopolymer chemestry & applications 3rd edition, (2011).

[12] G. Masi, W.D.A. Rickard, L. Vickers, M.C. Bignozzi, A. Van Riessen, A comparison between different foaming methods for the synthesis of light weight geopolymers, Ceram. Int. 40 (2014) 13891–13902. doi:10.1016/j.ceramint.2014.05.108

[13] V. Vaou, D. Panias, Thermal insulating foamy geopolymers from perlite, Miner. Eng. 23 (2010) 1146–1151. doi:10.1016/j.mineng.2010.07.015

[14] M. Strozi Cilla, P. Colombo, M. Raymundo Morelli, Geopolymer foams by gelcasting, Ceram. Int. 40 (2014) 5723–5730. doi:10.1016/j.ceramint.2013.11.011

[15] J.G. et al. Sanjayan, Physical and mechanical properties of lightweight aerated geopolymer, Constr. Build. Mater. 79 (2015) 236–244. doi:10.1016/j.conbuildmat.2015.01.043

[16] P. Hlavacek et al., Inorganic foams made from alkali-activated fly ash: Mechanical, chemical and physical properties, J. Eur. Ceram. Soc. 35 (2015) 703–709. doi:10.1016/j.jeurceramsoc.2014.08.024

[17] J. Feng, R. Zhang, L. Gong, Y. Li, W. Cao, X. Cheng, Development of porous fly ash-based geopolymer with low thermal conductivity, Mater. Des. 65 (2015) 529–533. doi:10.1016/j.matdes.2014.09.024

[18] E. Kamseu, B. Nait-Ali, M.C. Bignozzi, C. Leonelli, S. Rossignol, D.S. Smith, Bulk composition and microstructure dependence of effective thermal conductivity of porous inorganic polymer cements, J. Eur. Ceram. Soc. 32 (2012) 1593–1603. doi:10.1016/j.jeurceramsoc.2011.12.030

[19] F.K. Akthar, J.R.G. Evans, High porosity (> 90%) cementitious foams, Cem. Concr. Res. 40 (2010) 352– 358. doi:10.1016/j.cemconres.2009.10.012

[20] (Kreft. O), Pore size distribution effects on the thermal conductivity of light weight autolaved aerated concrete, in: 5th Int. Conf. Autoclaved Aerated Concr. Bydgoscsz, 2011.

[21] A. Buchwald, C. Kaps, M. Hohmann, Alkali-activated binder and pozzolan cement binders-compete reaction or two side of the story?, 11 Th Int. Congr. Chem. Cem. (2003) 1238–1246.

[22] J. Feng, R. Zhang, L. Gong, Y. Li, W. Cao, X. Cheng, Development of porous fly ash-based geopolymer with low thermal conductivity, Mater. Des. 65 (2015) 529–533. doi:10.1016/j.matdes.2014.09.024

[23] X. yan Zhou, F. Zheng, H. guan Li, C. long Lu, An environment-friendly thermal insulation material from cotton stalk fibers, Energy Build. 42 (2010) 1070–1074. doi:10.1016/j.enbuild.2010.01.020