Environmental Vulnerability on Tsunami Hazard, Cisolok Village, Sukabumi

Abstract

Indonesia is one of the countries located in a series of volcanoes or commonly called the ring of fire. This situation later became vulnerable to disaster events in Indonesia. Tsunami is one of the most vulnerable disasters in Indonesia, with the shape of this country with many volcanoes surrounded, one of which is Cisolok Village. This study aims to analyze tsunami hazard areas and analyze environmental vulnerability to tsunami hazards in Cisolok Village. In the tsunami hazard, this paper use the map that has been issued by InaRisk BNPB, for environmental vulnerability three factors are seen, namely land cover, geomorphology and geology. The method used is spatial analysis and descriptive analysis. As a result, the tsunami hazard map shows Inarisk using inundation heights up to 10 meters with three classifications namely low, medium and high. The environmental vulnerability to tsunami map is divided into three classes where 25.67% low vulnerability, 30,69% medium vulnerability dan 43.14% high vulnerability.


 

References
[1] Intergovernmental Panel on Climate Change, 1995. Climate Change 1995: the Science of Climate Change. Cambridge University Press, Cambridge.

[2] van Zuidam, R. (1985). Guide to geomorphic aerial photographic interpretation and mapping. International Institute for Aerospace Survey and Earth Science (ITC). The Hague, 191.

[3] Hidayati, I. Y., and Setyono, J. S. (2015). Tingkat Kerentanan Lingkungan Kabupaten Wonogiri. Teknik PWK (Perencanaan Wilayah Kota), vol. 4, no. 4, pp. 592–604.

[4] Kaly, U.L., Pratt, C.R., Mitchell, J., 2004. The Demonstration Environmental Vulnerability Index (EVI) 2004. SOPAC. Technical Report, 384.

[5] Adger, W.N., 2006. Vulnerability. Glob. Environ. change 16 (3), 268–281.

[6] BNPB. 2016. Risiko Bencana Indonesia.

[7] Prima, E (2018). Alasan Tsunami di Teluk Lebih Berbahaya Dibanding Pesisir Terbuka, tempo.co, October 2.

[8] BNPB. 2015. Petunjuk teknis penyusunan rencana penanggulangan bencana daerah tingkat kabupaten/kota

[9] BNPB. 2008. Pedoman Penyusunan Rencana Penanggulangan Bencana.

[10] International Institute for Geo-Information Science and Earth Observation (ITC. 2005). Characteristic of tsunami https://webapps.itc.utwente.nl/librarywww/papers_2005/tsunami/Tsunami.pdf diakses pada 14 April 2019

[11] Goff J., and Dominey-Howes D. (2013) Tsunami. In: John F. Shroder (ed.) Treatise on Geomorphology, Volume 13, pp. 204-218. San Diego: Academic Press.

[12] Shroder, J. F. (ed.). (2013). Tsunami, in Treatise on Geomorphology, Volume 13, pp. 204-218. San Diego: Academic Press.

[13] Pusat Vulkanik dan Mitigasi Bencana Geologi (PVMBG). 2013. Pengenalan tsunami.https://www.esdm. go.id/assets/media/content/Pengenalan_Tsunami.pdf diakses pada 14 April 2019.

[14] UNISDR (United Nations International Strategy for Disaster Reduction), 2009. Terminology: Basic Terms of Disaster Risk Reduction. http://www.unisdr.org/we/ inform/terminology (access 19.03.14.).

[15] IPCC, 2012. Managing the risks of extreme events and disasters to Advance climate change adaptation. A special report of working groups I and II of the intergovernmental Panel on climate change. In: Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Allen, S.K., Tignor, M., Midgley, P.M. (Eds.), Cambridge University Press, Cambridge, UK, and New York, NY, USA, p. 582.

[16] Gallina, V., Torresan, S., Critto, A., et al. (2016). A review of multi-risk methodologies for natural hazards: Consequences and challenges for a climate change impact assessment. Journal of environmental management, 168, 123–132.

[17] Kaly, U., Briguglio, L., McLeod, H., et al. (1999). Environmental Vulnerability Index (EVI) to summarise national environmental vulnerability profiles. (Report No. 275). New Zealand: SOPAC.

[18] INTER-AMERICAN DEVELOPMENT BANK. Cooperación Regional para Reducir la Vulnerabilidad Ambiental y Promover el Desarrollo Sostenible en Centroamérica. CCAD/SICA-DGMA - PNUD/PNUMA/CEPAL - Banco Mundial. Estocolmo, Suécia. Maio 1999. Disponível em . Acesso em 05 September 2007.

[19] Grigio, A. M. (2008). Evolução da paisagem do baixo curso do rio de Piranhas-Assu (1988–2024): uso de autômatos celulares em modelo dinâmico espacial para simulação de cenários futuros.

[20] Grigio, A. M., De Castro, A. F., Souto, M. D. S., et al. (2006). Use of remote sensing and geographical information system in the determination of the natural and environmental vulnerability of the Municipal District of Guamaré-Rio Grande do Norte-Northeast of Brazil. Journal of Coastal Research, vol. III, no. 39, pp. 1427–1431.

[21] van Zuidam, R. (1985). Guide to geomorphic aerial photographic interpretation and mapping. International Institute for Aerospace Survey and Earth Science (ITC). The Hague, 191.

[22] Lyell, C. (1990). Principles of geology (Vol. 1). Chicago: University of Chicago Press.

[23] Hamuna, B., Sari, A. N., & Alianto, A. (2018). Kajian Kerentanan Wilayah Pesisir Ditinjau dari Geomorfologi dan Elevasi Pesisir Kota dan Kabupaten Jayapura, Provinsi Papua. Jurnal Wilayah dan Lingkungan, 6(1), 1–14.

[24] Lopes, D. N., Grigio, A. M., and da Silva, M. T. (2018). Mapeamento das Áreas de Vulnerabilidade Ambiental e Natural do Município de Tibau-RN. Anuário do Instituto de Geociências, vol. 41, no. 1, pp. 80–88.

[25] Soegianto, A. (2005). Ilmu Lingkungan Sarana Menuju Masyarakat Berkelanjutan. Surabaya: Universitas Airlangga.

[26] International Strategy for Disaster Reduction, 2004. Living With Risk: A Global Review of Disaster Reduction Initiatives. UN Publications, Geneva.