Mathematical Modeling of Plankton Biomass Dynamics During the Spring Thermal Bar in Kamloops Lake

Abstract

The mathematical model developed for simulating hydrobiological processes in a lake takes into account the diurnal variability of the heat fluxes and wind stress on the water surface. Study of the interaction of the biological components is accomplished by using the nutrient–phytoplankton–zooplankton–detritus model of Parker. The results of numerical modeling of plankton biomass dynamics during the development of the spring riverine thermal bar in Kamloops Lake, British Columbia, Canada, influence on phytoplankton concentrations in the upper layers of the lake. At the presence of wind stress, zooplankton populations increase by transport from the river mouth, but concentrations of phytoplankton reduce due to the supply of colder waters
from the open lake.

References
[1] Parfenova V V, Shimaraev M N, Kostornova T Ya, Domysheva V М, Levin L A, Dryukker V V, Zhdanov A A, Gnatovskii R Yu, Tsekhanovskii V V and Logacheva N F 2000 Microbiology 69 357–63.


[2] Mortimer C H 1974 Mitt. Int. Ver. Limnol. 20 124–97.


[3] Botte V and Kay A 2000 J. Mar. Sys. 26 367–86.


[4] Holland P R, Kay A and Botte V 2003 J. Mar. Syst. 43 61–81.


[5] Holland P R and Kay A 2003 Limnologica 33 153–62.


[6] Ji Zh G 2007 Hydrodynamics and Water Quality: Modeling Rivers, Lakes, and Estuaries (New York: John Wiley & Sons).


[7] Vasiliev O F, Bocharov O B, Kvon V I, Ovchinnikova T E and Kvon D V 1998 Proc. 3 Int. Conf. on Hydro-Science and Engineering (Electronic Materials) (Cottbus/Berlin) p 20.


[8] Parker R A 1991 J. Plankton Res. 1991 13 815–30.


[9] Tsydenov B O, Kay A and Starchenko A V 2016 Ocean Modelling 104 73–83.


[10] Wilcox D 1988 AIAA J. 26 1299–310.


[11] Tsydenov B O and Starchenko A V 2014 Vestn. Tomsk. Gos. Univ. Mat. Mekh. 5 104–13.


[12] Chen C and Millero F 1986 Limnol. Oceanogr. 31 657–62.


[13] Sverdrup H 1953 J. du Conseil Int. pour l’Exploration de la Mer. 18 287–95.


[14] Orlanski I 1976 J. Comput. Phys. 21 251–69.


[15] Tsydenov B O and Starchenko A V 2015 Proc. SPIE 9680 96800H.


[16] Aleksandrova M P, Gulev S K and Sinitsyn A V 2007 Russian Meteorology and Hydrology 32 245–51.


[17] Patankar S 1980 Numerical heat transfer and fluid flow (Washington DC: Hemisphere Publishing Corp.) p 210.


[18] Leonard B 1979 Computer Methods in Applied Mechanics and Engineering 19 59–98.


[19] Tsydenov B 2016 Proc. SPIE 10035 1003503.