Evaluation of Interactions Between Transient Receptor Potential Vanilloid 1 and Active Constituents Using Molecular Docking

Authors

  • Sahar Jaffal Pharmacy Department, College of Pharmacy, Amman Arab University, Amman https://orcid.org/0000-0001-7115-5841
  • Salman Khan Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad
  • Muhammad Ibrar Khan Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad

DOI:

https://doi.org/10.18502/dmj.v8i2.19001

Keywords:

TRPV1, active constituents, ligands, docking, receptor

Abstract

Introduction: Pain, whether acute or chronic, imposes huge economic burdens in the societies due to complexities in the signaling pathways that lead to pain. There are many nociceptive receptors and channels that play key roles in the processing and maintenance of pain. Transient receptor potential vanilloid 1 (TRPV1) is a nonselective cation channel that is considered a crucial target in pain. Drugs that are available in the market have side effects, highlighting the need to find new analgesics that have no side effects.

Methods: In this study, we assessed the interactions between active constituents and TRPV1 receptor using molecular docking in comparison to capsazepine and the analgesic drug SB-3567791; 3-(4-chlorophenyl)-N-(3-methoxyphenyl)-2-propenamide. Molecular docking is a computational technique that provides calculation for the non-covalent binding of protein or receptor and ligand molecule(s) and aids in investigating the binding interaction between ligands and receptors. These selected active constituents belong to different classes of secondary metabolites including alkaloids, terpenoids, and flavonoids.

Results: The results indicate promising binding affinities between and TRPV1 receptor and speciofoline, mitragynine, 7-hydroxymitragynine, salvinorin, mescaline, acacetin, ladanein, vulgarin, marrubiin, geranial, neral, epi-α-cadinol (t-cadinol), myrtenol, δ- cadinene, and α-terpineol. The compound α-calacorene showed no affinity toward TRPV1 receptor at all.

Conclusion: Many active compounds are ligands for TRPV1 channel and can be assessed to determine their effects on inhibiting TRPV1 as analgesics. These results allow us to assess the effects of many of these compounds on TRPV1 channel in vivo and in vitro.

References

[1] Vos T, Lim SS, Abbafati C, Abbas KM, Abbasi M, Abbasifard M, et al.; GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020 Oct;396(10258):1204– 1222. https://doi.org/10.1016/S0140-6736(20)30925-9 PMID:33069326 DOI: https://doi.org/10.1016/S0140-6736(20)30925-9

[2] Liu S, Kelliher L. Physiology of pain—a narrative review on the pain pathway and its application in the pain management. Dig Med Res. 2022;5:56–56. https://doi.org/10.21037/dmr-21-100 DOI: https://doi.org/10.21037/dmr-21-100

[3] Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, et al. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron. 1998 Sep;21(3):531–543. https://doi.org/10.1016/S0896-6273(00)80564-4 PMID:9768840 DOI: https://doi.org/10.1016/S0896-6273(00)80564-4

[4] Julius D. TRP channels and pain. Annu Rev Cell Dev Biol. 2013;29(1):355–384. https://doi.org/10.1146/annurev-cellbio-101011-155833 PMID:24099085 DOI: https://doi.org/10.1146/annurev-cellbio-101011-155833

[5] Jaffal SM. Role of TRPV1 in health and disease [ JERP]. J Explor Res Pharmacol. 2023;8(4):348–361.

[6] Huang W, Wang Y, Tian W, Cui X, Tu P, Li J, et al. Biosynthesis investigations of terpenoid, alkaloid, and flavonoid antimicrobial agents derived from medicinal plants. Antibiotics (Basel). 2022 Oct;11(10):1380. https://doi.org/10.3390/antibiotics11101380 PMID:36290037 DOI: https://doi.org/10.3390/antibiotics11101380

[7] Khan MI, Khan A, Zafar S, Aslam S, Khan AU, Shal B, et al. Anti-nociceptive effects of magnolol via inhibition of TRPV1/P2Y and TLR4/NF-κB signaling in a postoperative pain model. Life Sci. 2023 Jan;312:121202. https://doi.org/10.1016/j.lfs.2022.121202 PMID:36414090 DOI: https://doi.org/10.1016/j.lfs.2022.121202

[8] Adasme MF, Linnemann KL, Bolz SN, Kaiser F, Salentin S, Haupt VJ, et al. PLIP 2021: Expanding the scope of the protein-ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 2021 Jul;49 W1:W530–W534. https://doi.org/10.1093/nar/gkab294 PMID:33950214 DOI: https://doi.org/10.1093/nar/gkab294

[9] Yelshanskaya MV, Sobolevsky AI. Ligand-binding sites in vanilloid-subtype TRP channels. Front Pharmacol. 2022 May;13:900623. https://doi.org/10.3389/fphar.2022.900623PMID:35652046 DOI: https://doi.org/10.3389/fphar.2022.900623

[10] Neuberger A, Oda M, Nikolaev YA, Nadezhdin KD, Gracheva EO, Bagriantsev SN, et al. Human TRPV1 structure and inhibition by the analgesic SB-366791. Nat Commun. 2023 Apr;14(1):2451. https://doi.org/10.1038/s41467-023-38162-9 PMID:37117175 DOI: https://doi.org/10.1038/s41467-023-38162-9

[11] Wang X, Bao C, Li Z, Yue L, Hu L. Side effects of opioids are ameliorated by regulating TRPV1 receptors. Int J Environ Res Public Health. 2022 Feb;19(4):2387. https://doi.org/10.3390/ijerph19042387 PMID:35206575 DOI: https://doi.org/10.3390/ijerph19042387

[12] Sohilait MR, Pranowo HD, Haryadi W. Molecular docking analysis of curcumin analogues with COX-2. Bioinformation. 2017 Nov;13(11):356–359. https://doi.org/10.6026/97320630013356PMID:29225427 DOI: https://doi.org/10.6026/97320630013356

[13] González AM, Tracanna MI, Amani SM, Schuff C, Poch MJ, Bach H, et al. Chemical composition, antimicrobial and antioxidant properties of the volatile oil and methanol extract of Xenophyllum poposum. Nat Prod Commun. 2012 Dec;7(12):1663–1666. https://doi.org/10.1177/1934578X1200701230 PMID:23413577 DOI: https://doi.org/10.1177/1934578X1200701230

[14] Popoola OK, Elbagory AM, Ameer F, Hussein AA. Marrubiin. Molecules. 2013 Jul;18(8):9049–9060. https://doi.org/10.3390/molecules18089049 PMID:23899837 DOI: https://doi.org/10.3390/molecules18089049

[15] De Jesus RA, Cechinel-Filho V, Oliveira AE, Schlemper V. Analysis of the antinociceptive properties of marrubiin isolated from Marrubium vulgare. Phytomedicine. 2000 Apr;7(2):111–115. https://doi.org/10.1016/S0944-7113(00)80082-3 PMID:10839213 DOI: https://doi.org/10.1016/S0944-7113(00)80082-3

[16] Meyre-Silva C, Yunes RA, Schlemper V, Campos-Buzzi F, Cechinel-Filho V. Analgesic potential of marrubiin derivatives, a bioactive diterpene present in Marrubium vulgare (Lamiaceae). Farmaco. 2005 Apr;60(4):321–326. https://doi.org/10.1016/j.farmac.2005.01.003PMID:15848207 DOI: https://doi.org/10.1016/j.farmac.2005.01.003

[17] Sever Yιlmaz B, Özbek H, Saltan Çitoğlu G. Antinociceptive and anti-inflammatory activities of Ballota inaequidens. Pharm Biol. 2006;44(8):636–641. https://doi.org/10.1080/13880200600897577 DOI: https://doi.org/10.1080/13880200600897577

[18] Alkhatib R, Joha S, Cheok M, Roumy V, Idziorek T, Preudhomme C, et al. Activity of ladanein on leukemia cell lines and its occurrence in Marrubium vulgare. Planta Med. 2010 Jan;76(1):86–87. https://doi.org/10.1038/s41598-020-76119-w PMID:33154449 DOI: https://doi.org/10.1055/s-0029-1185972

[19] Todd DA, Kellogg JJ, Wallace ED, Khin M, Flores-Bocanegra L, Tanna RS, et al. Chemical composition and biological effects of kratom (Mitragyna speciosa): In vitro studies with implications for efficacy and drug interactions. Sci Rep. 2020 Nov;10(1):19158. https://doi.org/10.1038/s41598-020-76119-w PMID:33154449 DOI: https://doi.org/10.1038/s41598-020-76119-w

[20] McCurdy CR, Sufka KJ, Smith GH, Warnick JE, Nieto MJ. Antinociceptive profile of salvinorin A, a structurally unique kappa opioid receptor agonist. Pharmacol Biochem Behav. 2006 Jan;83(1):109–113. https://doi.org/10.1016/j.pbb.2005.12.011 PMID:16434091 DOI: https://doi.org/10.1016/j.pbb.2005.12.011

[21] Dinis-Oliveira RJ, Pereira CL, da Silva DD. Pharmacokinetic and pharmacodynamica aspects of peyote and mescaline: Clinical and forensic repercussions. Curr Mol Pharmacol. 2019;12(3):184–194. https://doi.org/10.2174/1874467211666181010154139 PMID:30318013 DOI: https://doi.org/10.2174/1874467211666181010154139

[22] Ferri S, Santagostino A, Braga PC. Development of tolerance to the antinociceptive effect of mescaline intraventricularly administered to rabbits. Psychopharmacology (Berl). 1976;47(3):261–265. https://doi.org/10.1007/BF00427610 DOI: https://doi.org/10.1007/BF00427610

[23] Carballo-Villalobos AI, González-Trujano ME, López-Mu noz FJ. Evidence of mechanism of action of anti-inflammatory/antinociceptive activities of acacetin. Eur J Pain. 2014 Mar;18(3):396–405. https://doi.org/10.1002/j.1532-2149.2013.00378.x PMID:23918449 DOI: https://doi.org/10.1002/j.1532-2149.2013.00378.x

[24] Rauf A, Khan R, Khan H, Ullah B, Pervez S. Antipyretic and antinociceptive potential of extract/fractions of Potentilla evestita and its isolated compound, acacetin. BMC Complement Altern Med. 2014 Nov;14(1):448. https://doi.org/10.1186/1472-6882-14-448 PMID:25407486 DOI: https://doi.org/10.1186/1472-6882-14-448

[25] de Paula JA, Silva MR, Costa MP, Diniz DG, Sá FA, Alves SF, et al. Phytochemical analysis and antimicrobial, antinociceptive, and anti-inflammatory activities of two chemotypes of Pimenta pseudocaryophyllus (Myrtaceae). Evid Based Complement Alternat Med. 2012;2012:420715. https://doi.org/10.1155/2012/420715 PMID:23082081 DOI: https://doi.org/10.1155/2012/420715

[26] Nishijima CM, Ganev EG, Mazzardo-Martins L, Martins DF, Rocha LR, Santos AR, et al. Citral: A monoterpene with prophylactic and therapeutic anti-nociceptive effects in experimental models of acute and chronic pain. Eur J Pharmacol. 2014 Aug;736:16–25. https://doi.org/10.1016/j.ejphar.2014.04.029 PMID:24792822 DOI: https://doi.org/10.1016/j.ejphar.2014.04.029

[27] Alves Rodrigues Santos SA, de Barros Mamede Vidal Damasceno M, Alves Magalh aes FE, Sessle BJ, Amaro de Oliveira B, Alves Batista FL, et al. Transient receptor potential channel involvement in antinociceptive effect of citral in orofacial acute and chronic pain models. EXCLI J. 2022 Jun;21:869– 887. PMID:36172071

[28] Queiroz JC, Antoniolli ÂR, Quintans-Júnior LJ, Brito RG, Barreto RS, Costa EV, et al. Evaluation of the anti-inflammatory and antinociceptive effects of the essential oil from leaves of Xylopia laevigata in experimental models. ScientificWorldJournal. 2014;2014:816450. https://doi.org/10.1155/2014/816450 PMID:25097889 DOI: https://doi.org/10.1155/2014/816450

[29] Castillejos-Ramírez E, Pérez-Vásquez A, Torres-Colín R, Navarrete A, Andrade-Cetto A, Mata R. Antinociceptive effect of an aqueous extract and essential oil from Baccharis heterophylla. Plants. 2021 Jan;10(1):116. https://doi.org/10.3390/plants10010116PMID:33429861 DOI: https://doi.org/10.3390/plants10010116

[30] Zhang Y, Wang X, Ma L, Dong L, Zhang X, Chen J, et al. Anti-inflammatory, antinociceptive activity of an essential oil recipe consisting of the supercritical fluid CO2 extract of white pepper, long pepper, cinnamon, saffron and myrrh in vivo. J Oleo Sci. 2014;63(12):1251–1260. https://doi.org/10.5650/jos.ess14061 PMID:25263165 DOI: https://doi.org/10.5650/jos.ess14061

[31] Silva RO, Salvadori MS, Sousa FB, Santos MS, Carvalho NS, Sousa DP, et al. Evaluation of the anti-inflammatory and antinociceptive effects of myrtenol, a plant-derived monoterpene alcohol, in mice. Flavour Fragrance J. 2014;29(3):184–192. https://doi.org/10.1002/ffj.3195 DOI: https://doi.org/10.1002/ffj.3195

[32] World Health Organization (WHO). Expert Committee on Drug Dependence. Pre-review report: Kratom (Mitragyna speciosa), mitragynine, and 7-hydroxymitragynine. Forty-fourth Meeting Geneva, 11-15 October 2021.

[33] Cunningham CW, Rothman RB, Prisinzano TE. Neuropharmacology of the naturally occurring kappa-opioid hallucinogen salvinorin A. Pharmacol Rev. 2011 Jun;63(2):316–347. https://doi.org/10.1124/pr.110.003244 PMID:21444610 DOI: https://doi.org/10.1124/pr.110.003244

[34] Roth BL, Baner K, Westkaemper R, Siebert D, Rice KC, Steinberg S, et al. Salvinorin A: A potent naturally occurring nonnitrogenous kappa opioid selective agonist. Proc Natl Acad Sci USA. 2002 Sep;99(18):11934–11939. https://doi.org/10.1073/pnas.182234399 PMID:12192085 DOI: https://doi.org/10.1073/pnas.182234399

[35] Brito-da-Costa AM, Dias-da-Silva D, Gomes NG, Dinis-Oliveira RJ, Madureira-Carvalho Á. Pharmacokinetics and pharmacodynamics of Salvinorin A and Salvia divinorum: Clinical and forensic aspects. Pharmaceuticals (Basel). 2021 Feb;14(2):116. https://doi.org/10.3390/ph14020116 PMID:33546518 DOI: https://doi.org/10.3390/ph14020116

[36] Han DG, Cha E, Joo J, Hwang JS, Kim S, Park T, et al. Investigation of the factors responsible for the poor oral bioavailability of acacetin in rats: Physicochemical and biopharmaceutical aspects. Pharmaceutics. 2021 Jan;13(2):175. https://doi.org/10.3390/pharmaceutics13020175 PMID:33525442 DOI: https://doi.org/10.3390/pharmaceutics13020175

[37] Didigwu OK, Nnadi CO. Drug-likeness, pharmacokinetics, and toxicity prediction of phytotoxic terpenoids. Proceedings of the 1st International Electronic Conference on Toxins. 20–22 March 2024;102(1):47. https://doi.org/10.3390/proceedings2024102047 DOI: https://doi.org/10.3390/proceedings2024102047

[38] Aćimović M, Jeremić K, Salaj N, Gavarić N, Kiprovski B, Sikora V, et al. Marrubium vulgare L.: A Phytochemical and pharmacological overview. Molecules. 2020 Jun;25(12):2898. https://doi.org/10.3390/molecules25122898 PMID:32599693 DOI: https://doi.org/10.3390/molecules25122898

Downloads

Published

2025-06-30

How to Cite

Jaffal, S., Khan, S., & Khan, M. I. (2025). Evaluation of Interactions Between Transient Receptor Potential Vanilloid 1 and Active Constituents Using Molecular Docking. Dubai Medical Journal, 8(2), 140–152. https://doi.org/10.18502/dmj.v8i2.19001