Antimicrobial Effect of Multilayered Carbon Nanotubes on Multi-Drug-Resistant Pseudomonas aeruginosa

Abstract

Background: Pseudomonas aeruginosa is the primary cause of infection with impaired defense mechanisms. P. aeruginosa commonly causes nosocomial infections and is the most common pathogen isolated from patients hospitalized for longer than 1 week. We examined the antimicrobial effect of multilayered carbon nanotubes on multi-drug-resistant.


Materials and Methods: In this research, 20 clinical isolates collected at Motahari Hospital (Tehran, Iran) were compared with the standard (ATCC 27853) and identified as P. aeruginosa based on biochemical testing. Conventional disk diffusion assay demonstrated the methicillin resistance of the isolates. Minimal inhibitory concentrations for antibiotics and the multilayer CNTs were determined using the microdilution method. Single-walled CNTs were prepared and their efficacy and potential synergism with antibiotics was assessed.


Results: Synergism against P. aeruginosa was evident for methicillin + single-walled CNTs.


Conclusion: The inhibitory effect of single-walled CNTs and methicillin was synergistic against the growth of P. aeruginosa.

References
[1] Krylov V, Shaburova O, Krylov S, Pleteneva E. A genetic approach to the development of new therapeutic phages to fight Pseudomonas aeruginosa in wound infections. Viruses. 2012 Dec 21;5(1):15-53.

[2] Garner JS, Jarvis WR, Emori, TG, Horan TC, Hughes JM. CDC definitions for nosocomial infections. AM J Infect Control. 1988; 16: (3): 128-40.

[3] Hu YF, Liu CP, Wang NY, Shih SC. In vitro antibacterial activity of rifampicin in combination with imipenem, meropenem and doripenem against multidrug-resistant clinical isolates of Pseudomonas aeruginosa. BMC Infect. Dis. 2016 Dec;16(1):444.

[4] Cacci LC, Chuster SG, Martins N, Carmo PR, Girão VB, Nouér SA, Freitas WV, Matos JA, Magalhães AC, Ferreira AL, Picão RC. Mechanisms of carbapenem resistance in endemic Pseudomonas aeruginosa isolates after an SPM-1 metallo-β-lactamase producing strain subsided in an intensive care unit of a teaching hospital in Brazil.
Mem. Inst. Oswaldo Cruz. 2016 Sep;111(9):551-8.

[5] Harris A, Torres-Viera C, Venkataraman L, DeGirolami P, Samore M, Carmeli Y. Epidemiology and clinical outcomes of patients with multiresistant Pseudomonas aeruginosa. Clin. Infect. Dis. 1999 May 1;28(5):1128-33.

[6] Sahin K, Tekin A, Ozdas S, Akin D, Yapislar H, Dilek AR, Sonmez E. Evaluation of carbapenem resistance using phenotypic and genotypic techniques in Enterobacteriaceae isolates. Ann Clin Microbiol Antimicrob. 2015 Dec;14(1):44.

[7] Ugarte D, Chatelain A, De Heer WA. Nanocapillarity and chemistry in carbon nanotubes. Science. 1996 Dec 13;274(5294):1897-9.

[8] Taylor E, Webster TJ. Reducing infections through nanotechnology and nanoparticles. Int J Mol Med. 2011;6:1463.

[9] Narayanan KB, Sakthivel N. Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv Colloid Interface Science. 2011 Dec 12;169(2):59-79.

[10] Wang LS, Chuang MC, Ho JA. Nanotheranostics–a review of recent publications. Int J Mol Med. 2012;7:4679.

[11] Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. NBM. 2010 Feb 1;6(1):103-9.

[12] Orecchioni M, Bedognetti D, Sgarrella F, Marincola FM, Bianco A, Delogu LG. Impact of carbon nanotubes and graphene on immune cells. JTM. 2014 Dec;12(1):138.

[13] Biavatti MW. Synergy: an old wisdom, a new paradigm for pharmacotherapy. BJPS. 2009 Sep;45(3):371-8.

[14] Winn WC. Koneman’s color atlas and textbook of diagnostic microbiology. Lippincott williams & wilkins; 2006.

[15] Ranković BR, Kosanić MA. Antimicrobial activities of different extracts of Lecanora atra, Lecanora muralis, Parmelia saxatilis, Parmelia sulcata and Parmeliopsis ambigua. Pak. J. Bot. 2012 Feb 1;44(1):429-33.

[16] Kang S, Herzberg M, Rodrigues DF, Elimelech M. Antibacterial effects of carbon nanotubes: size does matter!. Langmuir. 2008 May 30;24(13):6409-13.

[17] Lara HH, Ayala-Núnez NV, Turrent LD, Padilla CR. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J MIcrobiol Biotechnol. 2010 Apr 1;26(4):615-21.

[18] Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. NLM. 2007 May 4;18(22):225103.

[19] Karki KB, Baskota DK. Welcome Letter.

[20] Vardharajula S, Ali SZ, Tiwari PM, Eroğlu E, Vig K, Dennis VA, Singh SR. Functionalized carbon nanotubes: biomedical applications. Int J Mol Med. 2012;7:5361.

[21] Niitsuma K, Saitoh M, Kojimabara M, Kashiwabara N, Aoki T, Tomizawa M, Maeda J, Kosenda T. Antimicrobial susceptibility of Pseudomonas aeruginosa isolated in Fukushima Prefecture. Jpn J Anitibiot. 2001 Feb;54(2):79-87.

[22] Rio Y, Pina P, Jurin F, Allouch P, Didion J, Chardon H, Chiche D. Susceptibility of Pseudomonas aeruginosa to antibiotics isolated from patients of intensive care units in France in 1998. Resistant phenotypes to beta-lactams. Pathol Biol. 2002 Feb;50(1):12-7.

[23] Yang H, Chen G, Hu L, Liu Y, Cheng J, Ye Y, Li J. Enhanced efficacy of imipenemcolistin combination therapy against multiple-drug-resistant Enterobacter cloacae: in vitro activity and a Galleria mellonella model. J Microbiol Immunol Infect. 2018 Feb 1;51(1):70-5.

[24] Ustun C, Hosoglu S, Geyik MF. Risk factors for multi-drug-resistant Pseudomonas aeruginosa infections in a University Hospital-a case control study. KONU. 2016 Jan 1;8(2):2016.

[25] Seo Y, Hwang J, Kim J, Jeong Y, Hwang MP, Choi J. Antibacterial activity and cytotoxicity of multi-walled carbon nanotubes decorated with silver nanoparticles. Int J Mol Med. 2014; 4621:4629.