Injectable Hydrogels: A Review of Injectability Mechanisms and Biomedical Applications

Abstract

Hydrogels have been used for biomedical applications in recent decades. They are a perfect candidate for regenerative medicine as they resemble the extracellular matrix of native tissues. In addition, their highly hydrated structure makes them a suitable choice for drug and other therapeutics delivery. Injectable hydrogels have increasingly gained attention due to their capability for homogeneous mixing with cells and therapeutic agents, minimally invasive administration, and perfect defect filling. In this review, we discuss various mechanisms which facilitate injectability of hydrogels, including in situ gelling liquids, injectable gels, and injectable particles. Then, we explore the biomedical applications of injectable hydrogels, including tissue engineering, therapeutic agent delivery, and medical devices.

References
[1] Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev. 2012;64:18-23.

[2] Caló E, Khutoryanskiy VV. Biomedical applications of hydrogels: A review of patents and commercial products. Euro Polym J. 2015;65:252-67.

[3] Dimatteo R, Darling NJ, Segura T. In situ forming injectable hydrogels for drug delivery and wound repair. Adv Drug Deliv Rev. 2018;127:167-84.

[4] Yang J-A, Yeom J, Hwang BW, Hoffman AS, Hahn SK. In situ-forming injectable hydrogels for regenerative medicine. Prog Polym Sci. 2014;39(12):1973-86.

[5] Van Tomme SR, Storm G, Hennink WE. In situ gelling hydrogels for pharmaceutical and biomedical applications. Int J Pharm. 2008;355(1-2):1-18.

[6] Klouda L, Mikos AG. Thermoresponsive hydrogels in biomedical applications. Euro J Pharm Biopharm. 2008;68(1):34-45.

[7] Klouda L. Thermoresponsive hydrogels in biomedical applications: A seven-year update. Eur J Pharm Biophar. 2015;97:338-49.

[8] Jeong B, Kim SW, Bae YH. Thermosensitive sol–gel reversible hydrogels. Adv Drug Deliv Rev. 2012;64:154-62.

[9] Csóka G, Gelencsér A, Makó A, Marton S, Zelkó R, Klebovich I, et al. Potential application of Metolose® in a thermoresponsive transdermal therapeutic system. Int J Pharm. 2007;338(1-2):15-20.

[10] Chenite A, Chaput C, Wang D, Combes C, Buschmann M, Hoemann C, et al. Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials. 2000;21(21):2155-61.

[11] Joly-Duhamel C, Hellio D, Djabourov M. All gelatin networks: 1. Biodiversity and physical chemistry. Langmuir. 2002;18(19):7208-17.

[12] Lanzalaco S, Armelin E. Poly (N-isopropylacrylamide) and copolymers: a review on recent progresses in biomedical applications. Gels. 2017;3(4):36.

[13] Mellati A, Kiamahalleh MV, Dai S, Bi J, Jin B, Zhang H. Influence of polymer molecular weight on the in vitro cytotoxicity of poly (N-isopropylacrylamide). Mater Sci Eng C. 2016;59:509-13.

[14] Alexandridis P, Hatton TA. Poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling. Colloids Surf A. 1995;96(1-2):1-46.

[15] Jung Y-s, Park W, Park H, Lee D-K, Na K. Thermo-sensitive injectable hydrogel based on the physical mixing of hyaluronic acid and Pluronic F-127 for sustained NSAID delivery. Carbohydr Polym. 2017;156:403-8.

[16] Oh SH, Kang JG, Lee JH. Co-micellized Pluronic mixture with thermo-sensitivity and residence stability as an injectable tissue adhesion barrier hydrogel. J Biomed Mater Res B. 2018;106(1):172-82.

[17] Choi WI, Hwang Y, Sahu A, Min K, Sung D, Tae G, et al. An injectable and physical levan-based hydrogel as a dermal filler for soft tissue augmentation. Biomater Sci. 2018;6(10):2627-38.

[18] Alexander A, Khan J, Saraf S, Saraf S. Poly (ethylene glycol)–poly (lactic-co-glycolic acid) based thermosensitive injectable hydrogels for biomedical applications. J Control Release. 2013;172(3):715-29.

[19] Gong C, Shi S, Wu L, Gou M, Yin Q, Guo Q, et al. Biodegradable in situ gelforming controlled drug delivery system based on thermosensitive PCL–PEG–PCL hydrogel. Part 2: Sol–gel–sol transition and drug delivery behavior. Acta Biomater. 2009;5(9):3358-70.

[20] Zhang W, Xu W, Ning C, Li M, Zhao G, Jiang W, et al. Long-acting hydrogel/microsphere composite sequentially releases dexmedetomidine and bupivacaine for prolonged synergistic analgesia. Biomaterials. 2018;181:378-91.

[21] Saghebasl S, Davaran S, Rahbarghazi R, Montaseri A, Salehi R, Ramazani A. Synthesis and in vitro evaluation of thermosensitive hydrogel scaffolds based on (PNIPAAm-PCL-PEG-PCL-PNIPAAm)/Gelatin and (PCL-PEG-PCL)/Gelatin for use in cartilage tissue engineering. J Biomater Sci Polym Ed. 2018;29(10):1185-206.

[22] Mellati A, Dai S, Bi J, Jin B, Zhang H. A biodegradable thermosensitive hydrogel with tuneable properties for mimicking three-dimensional microenvironments of stem cells. RSC Adv. 2014;4(109):63951-61.

[23] Mellati A, Fan CM, Tamayol A, Annabi N, Dai S, Bi J, et al. Microengineered 3D cellladen thermoresponsive hydrogels for mimicking cell morphology and orientation in cartilage tissue engineering. Biotech Bioeng. 2017;114(1):217-31.

[24] Gupta P, Vermani K, Garg S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today. 2002;7(10):569-79.

[25] Nguyen QV, Huynh DP, Park JH, Lee DS. Injectable polymeric hydrogels for the delivery of therapeutic agents: A review. Euro Polym J. 2015;72:602-19.

[26] Mathew AP, Uthaman S, Cho K-H, Cho C-S, Park I-K. Injectable hydrogels for delivering biotherapeutic molecules. Int J Biol Macromol. 2018;110:17-29.

[27] Xu X-D, Zhang X-Z, Cheng S-X, Zhuo R-X, Kennedy JF. A strategy to introduce the pH sensitivity to temperature sensitive PNIPAAm hydrogels without weakening the thermosensitivity. Carbohydr Polym. 2007;68(3):416-23.

[28] Kim HK, Shim WS, Kim SE, Lee K-H, Kang E, Kim J-H, et al. Injectable in situ– forming pH/thermo-sensitive hydrogel for bone tissue engineering. Tissue Eng A. 2008;15(4):923-33.

[29] Fang M, Long J, Zhao W, Wang L, Chen G. pH-responsive chitosan-mediated graphene dispersions. Langmuir. 2010;26(22):16771-4.

[30] Liu L, Tang X, Wang Y, Guo S. Smart gelation of chitosan solution in the presence of NaHCO3 for injectable drug delivery system. Int J Pharm. 2011;414(1-2):6-15.

[31] Joddar B, Garcia E, Casas A, Stewart CM. Development of functionalized multi-walled carbon-nanotube-based alginate hydrogels for enabling biomimetic technologies. Sci Reports. 2016;6:32456.

[32] Bidarra SJ, Barrias CC, Granja PL. Injectable alginate hydrogels for cell delivery in tissue engineering. Acta Biomater. 2014;10(4):1646-62.

[33] Yu J, Gu Y, Du KT, Mihardja S, Sievers RE, Lee RJ. The effect of injected RGD modified alginate on angiogenesis and left ventricular function in a chronic rat infarct model. Biomaterials. 2009;30(5):751-6.

[34] Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. European J Pharm Biopharm. 2004;57(1):19-34.

[35] Koutsopoulos S. Self-assembling peptide nanofiber hydrogels in tissue engineering and regenerative medicine: Progress, design guidelines, and applications. J Biomed Mater Res A. 2016;104(4):1002-16.

[36] Firth A, Aggeli A, Burke JL, Yang X, Kirkham J. Biomimetic self-assembling peptides as injectable scaffolds for hard tissue engineering. Nanomedicine. 2006;1(2):189-99.

[37] Galler KM, Hartgerink JD, Cavender AC, Schmalz G, D’Souza RN. A customized self-assembling peptide hydrogel for dental pulp tissue engineering. Tissue Eng A. 2011;18(1-2):176-84.

[38] Altunbas A, Lee SJ, Rajasekaran SA, Schneider JP, Pochan DJ. Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles. Biomaterials. 2011;32(25):5906-14.

[39] Liu L, Gao Q, Lu X, Zhou H. In situ forming hydrogels based on chitosan for drug delivery and tissue regeneration. Asian J Pharm. 2016;11(6):673-83.

[40] Mironi-Harpaz I, Wang DY, Venkatraman S, Seliktar D. Photopolymerization of cellencapsulating hydrogels: Crosslinking efficiency versus cytotoxicity. Acta Biomater.2012;8(5):1838-48.

[41] Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials. 2015;73:254-71.

[42] Lin H, Cheng AW-M, Alexander PG, Beck AM, Tuan RS. Cartilage tissue engineering application of injectable gelatin hydrogel with in situ visible-light-activated gelation capability in both air and aqueous solution. Tissue Eng A. 2014;20(17-18):2402-11.

[43] Park H, Choi B, Hu J, Lee M. Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering. Acta Biomater. 2013;9(1):4779-86.

[44] Cai S, Liu Y, Shu XZ, Prestwich GD. Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor. Biomaterials. 2005;26(30):6054-67.

[45] Steinwachs M, Cavalcanti N, Mauuva Venkatesh Reddy S, Werner C, Tschopp D, Choudur HN. Arthroscopic and open treatment of cartilage lesions with BSTCARGEL scaffold and microfracture: A cohort study of consecutive patients. The
Knee. 2019;26(1):174-84.

[46] Rhee C, Amar E, Glazebrook M, Coday C, Wong IH. Safety profile and short-term outcomes of BST-CarGel as an adjunct to microfracture for the treatment of chondral lesions of the hip. Orthop J Sports Med. 2018;6(8):2325967118789871.

[47] Guvendiren M, Lu HD, Burdick JA. Shear-thinning hydrogels for biomedical applications. Soft Matter. 2012;8(2):260-72.

[48] Gupta D, Tator CH, Shoichet MS. Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord. Biomaterials. 2006;27(11):2370-9.

[49] Gaharwar AK, Schexnailder PJ, Jin Q, Wu C-J, Schmidt G. Addition of chitosan to silicate cross-linked PEO for tuning osteoblast cell adhesion and mineralization. ACS App Mater Interfaces. 2010;2(11):3119-27.

[50] Jin Q, Schexnailder P, Gaharwar AK, Schmidt G. Silicate cross-linked bio-nanocomposite hydrogels from PEO and chitosan. Macromol Biosci. 2009;9(10):1028-35.

[51] Yalanis GC, Reddy S, Martin R, Choi J, Brandacher G, Mao H-Q, et al. An injectable nanofiber-hydrogel composite with interfacial bonding for soft tissue filling and regeneration. Plast Reconstr Surg. 2015;136(4S-1 (Supplement)):153-4.

[52] Li J, Loh XJ. Cyclodextrin-based supramolecular architectures: syntheses, structures, and applications for drug and gene delivery. Adv Drug Deliv Rev. 2008;60(9):1000-17.

[53] Fallacara A, Manfredini S, Durini E, Vertuani S. Hyaluronic acid fillers in soft tissue regeneration. Facial Plast Surg. 2017;33(01):087-96.

[54] Wu Y, Xu J, Jia Y, Murphy DK. Safety and effectiveness of hyaluronic acid injectable gel in correcting moderate nasolabial folds in chinese subjects. J Drugs Dermatol. 2016;15(1):70-6.

[55] Biswas S, Sambashivaiah S, Kulal R, Bilichodmath S, Kurtzman GM. Comparative evaluation of bioactive glass (putty) and platelet rich fibrin in treating furcation defects. J Oral Implantol. 2016;42(5):411-5.

[56] Chen X, Liu Z. A pH-Responsive hydrogel based on a tumor-targeting mesoporous silica nanocomposite for sustained cancer labeling and therapy. Macromol Rapid Comm. 2016;37(18):1533-9.

[57] Shen Z, Mellati A, Bi J, Zhang H, Dai S. A thermally responsive cationic nanogelbased platform for three-dimensional cell culture and recovery. RSC Advances. 2014;4(55):29146-56.

[58] Cors M, Wiehemeier L, Oberdisse J, Hellweg T. Deuteration-induced volume phase transition temperature shift of PNIPMAM microgels. Polymers. 2019;11(4):620.

[59] Wang Q, Wang J, Lu Q, Detamore MS, Berkland C. Injectable PLGA based colloidal gels for zero-order dexamethasone release in cranial defects. Biomaterials. 2010;31(18):4980-6.

[60] Wang Q, Jamal S, Detamore MS, Berkland C. PLGA-chitosan/PLGA-alginate nanoparticle blends as biodegradable colloidal gels for seeding human umbilical cord mesenchymal stem cells. J Biomed Mater Res A. 2011;96(3):520-7.

[61] Zhang H, Yang C, Zhou W, Luan Q, Li W, Deng Q, et al. A pH-responsive gel macrosphere based on sodium alginate and cellulose nanofiber for potential intestinal delivery of probiotics. ACS Sustain Chem Eng. 2018;6(11):13924-31.

[62] Lanza R, Langer R, Vacanti JP. Principles of tissue engineering: Academic Press; 2011.

[63] Kondiah P, Choonara Y, Kondiah P, Marimuthu T, Kumar P, du Toit L, et al. A review of injectable polymeric hydrogel systems for application in bone tissue engineering. Molecules. 2016;21(11):1580.

[64] Kim MH, Kim BS, Park H, Lee J, Park WH. Injectable methylcellulose hydrogel containing calcium phosphate nanoparticles for bone regeneration. Int J Biol Macromol. 2018;109:57-64.

[65] Liu M, Zeng X, Ma C, Yi H, Ali Z, Mou X, et al. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res. 2017;5:17014.

[66] Elisseeff J. Injectable cartilage tissue engineering. Expert Opi Biol Ther. 2004;4(12):1849-59.

[67] Eslahi N, Abdorahim M, Simchi A. Smart polymeric hydrogels for cartilage tissue engineering: A review on the chemistry and biological functions. Biomacromol. 2016;17(11):3441-63.

[68] Rizzi SC, Upton Z, Bott K, Dargaville TR. Recent advances in dermal wound healing: biomedical device approaches. Expert Rev Med Dev. 2010;7(1):143-54.

[69] Lin Y-C, Marra KG. Injectable systems and implantable conduits for peripheral nerve repair. Biomed Mater. 2012;7(2):024102.

[70] Macaya D, Spector M. Injectable hydrogel materials for spinal cord regeneration: a review. Biomed Mater.2012;7(1):012001.

[71] Tang Z, Jiang F, Zhang Y, Zhang Y, YuanYang, Huang X, et al. Mussel-inspired injectable hydrogel and its counterpart for actuating proliferation and neuronal differentiation of retinal progenitor cells. Biomaterials. 2019;194:57-72.

[72] Johnson TD, Christman KL. Injectable hydrogel therapies and their delivery strategies for treating myocardial infarction. Expert Opi Drug Deliv. 2013;10(1):59-72.

[73] Peña B, Laughter M, Jett S, Rowland TJ, Taylor MR, Mestroni L, et al. Injectable hydrogels for cardiac tissue engineering. Macromol Biosci. 2018;18(6):1800079.

[74] Waters R, Alam P, Pacelli S, Chakravarti AR, Ahmed RPH, Paul A. Stem cell-inspired secretome-rich injectable hydrogel to repair injured cardiac tissue. Acta Biomater. 2018;69:95-106.

[75] Naderi-Meshkin H, Andreas K, Matin MM, Sittinger M, Bidkhori HR, Ahmadiankia N, et al. Chitosan-based injectable hydrogel as a promising in situ forming scaffold for cartilage tissue engineering. Cell Biol Int. 2014;38(1):72-84.

[76] Yuan L, Li B, Yang J, Ni Y, Teng Y, Guo L, et al. Effects of composition and mechanical property of injectable collagen I/II composite hydrogels on chondrocyte behaviors. Tissue Eng A. 2016;22(11-12):899-906.

[77] Balakrishnan B, Joshi N, Jayakrishnan A, Banerjee R. Self-crosslinked oxidized alginate/gelatin hydrogel as injectable, adhesive biomimetic scaffolds for cartilage regeneration. Acta Biomater. 2014;10(8):3650-63.

[78] Benavides OM, Brooks AR, Cho SK, Petsche Connell J, Ruano R, Jacot JG. In situ vascularization of injectable fibrin/poly (ethylene glycol) hydrogels by human amniotic fluid-derived stem cells. J Biomed Mater Res A. 2015;103(8):2645-53.

[79] Fathi A, Mithieux SM, Wei H, Chrzanowski W, Valtchev P, Weiss AS, et al. Elastin based cell-laden injectable hydrogels with tunable gelation, mechanical and biodegradation properties. Biomaterials. 2014;35(21):5425-35.

[80] Jin R, Teixeira LSM, Dijkstra PJ, van Blitterswijk CA, Karperien M, Feijen J. Chondrogenesis in injectable enzymatically crosslinked heparin/dextran hydrogels. J Control Release. 2011;152(1):186-95.

[81] Yu F, Cao X, Li Y, Zeng L, Yuan B, Chen X. An injectable hyaluronic acid/PEG hydrogel for cartilage tissue engineering formed by integrating enzymatic crosslinking and Diels–Alder “click chemistry”. Polym Chem. 2013;5(3):1082-90.

[82] Skaalure SC, Chu S, Bryant SJ. An enzyme-sensitive PEG hydrogel based on aggrecan catabolism for cartilage tissue engineering. Adv Healthc Mater. 2015;4(3):420-31.

[83] Xu Q, A S, Gao Y, Guo L, Creagh-Flynn J, Zhou D, et al. A hybrid injectable hydrogel from hyperbranched PEG macromer as a stem cell delivery and retention platform for diabetic wound healing. Acta Biomaterialia. 2018;75:63-74.

[84] Ko C-Y, Yang C-Y, Yang S-R, Ku K-L, Tsao C-K, Chuang DC-C, et al. Cartilage formation through alterations of amphiphilicity of poly (ethylene glycol)–poly (caprolactone) copolymer hydrogels. RSC Advances. 2013;3(48):25769-79.

[85] Kang S-W, Jeon O, Kim B-S. Poly (lactic-co-glycolic acid) microspheres as an injectable scaffold for cartilage tissue engineering. Tissue Eng. 2005;11(3-4):438-47.

[86] Ganji F, Abdekhodaie M, SA AR. Gelation time and degradation rate of chitosanbased injectable hydrogel. J Solgel Sci Tech. 2007;42(1):47-53.

[87] Tan H, Li H, Rubin JP, Marra KG. Controlled gelation and degradation rates of injectable hyaluronic acid-based hydrogels through a double crosslinking strategy. J Tissue Eng Regen Med. 2011;5(10):790-7.

[88] Domingues RM, Silva M, Gershovich P, Betta S, Babo P, Caridade SG, et al. Development of injectable hyaluronic acid/cellulose nanocrystals bionanocomposite hydrogels for tissue engineering applications. Bioconjugate Chem. 2015;26(8):1571-81.

[89] Boyer C, Figueiredo L, Pace R, Lesoeur J, Rouillon T, Le Visage C, et al. Laponite nanoparticle-associated silated hydroxypropylmethyl cellulose as an injectable reinforced interpenetrating network hydrogel for cartilage tissue engineering. Acta Biomater. 2018;65:112-22.

[90] Ingavle GC, Gionet-Gonzales M, Vorwald CE, Bohannon LK, Clark K, Galuppo LD, et al. Injectable mineralized microsphere-loaded composite hydrogels for bone repair in a sheep bone defect model. Biomaterials. 2019;197:119-28.

[91] Kiamahalleh MV, Mellati A, Madani SA, Pendleton P, Zhang H, Madani SH. Smart carriers for controlled drug delivery: Thermosensitive polymers embedded in ordered mesoporous carbon. J Pharmaceutical Sci. 2017;106(6):1545-52.

[92] Davoodi P, Ng WC, Yan WC, Srinivasan MP, Wang C-H. Double-walled microparticlesembedded self-cross-linked, injectable, and antibacterial hydrogel for controlled and sustained release of chemotherapeutic agents. ACS Appl Mater Interfaces. 2016;8(35):22785-800.

[93] Chou H-S, Larsson M, Hsiao M-H, Chen Y-C, Röding M, Nydén M, et al. Injectable insulin-lysozyme-loaded nanogels with enzymatically-controlled degradation and release for basal insulin treatment: In vitro characterization and in vivo observation. J Control Release. 2016;224:33-42.

[94] Jalili NA, Jaiswal MK, Peak CW, Cross LM, Gaharwar AK. Injectable nanoengineered stimuli-responsive hydrogels for on-demand and localized therapeutic delivery. Nanoscale. 2017;9(40):15379-89.

[95] Annaka M, Mortensen K, Matsuura T, Ito M, Nochioka K, Ogata N. Organic–inorganic nanocomposite gels as an in situ gelation biomaterial for injectable accommodative intraocular lens. Soft Matter. 2012;8(27):7185-96.

[96] Oliveira SM, Barrias CC, Almeida IF, Costa PC, Ferreira MRP, Bahia MF, et al. Injectability of a bone filler system based on hydroxyapatite microspheres and a vehicle with in situ gel-forming ability. J Biomed Mater Res B. 2008;87(1):49-58.

[97] Low KL, Tan SH, Zein SHS, Roether JA, Mouriño V, Boccaccini AR. Calcium phosphate-based composites as injectable bone substitute materials. J Biomed Mater B. 2010;94(1):273-86.

[98] Falcone SJ, Doerfler AM, Berg RA. Novel synthetic dermal fillers based on sodium carboxymethylcellulose: comparison with crosslinked hyaluronic acid–based dermal fillers. Dermatol Surg. 2007;33:S136-S43.

[99] Allemann IB, Baumann L. Hyaluronic acid gel ( Juvéderm