Prevalence of bla VIM, bla IMP, and bla KPC Genes Among Carbapenem-Resistant Klebsiella pneumoniae (CRKP) Isolated from Kurdistan and Isfahan Hospitals, Iran

Abstract

Background: Carbapenem resistance among Klebsiella pneumoniae is an emerging problem worldwide. One of the main mechanisms of resistance to carbapenems is the potential of Klebsiella pneumoniae to produce carbapenemase enzyme. This study was conducted to determine the frequency of blaVIM, blaIMP, and blaKPC
among carbapenem-resistant K. pneumoniae (CRKP) isolated from Kurdistan and Isfahan hospitals.
Materials and Methods: This study was carried out in Iran using 183 samples from the Besat and Alzahra hospitals in 2017. Antibiotic susceptibility tests were performed by Kirby-Bauer disc diffusion. The modified Hodge test (MHT) was used to investigate the presence of carbapenemase. The The β -lactamases genes were detected by PCR.


Results: The highest and lowest rates of resistance were observed against cefotaxime (98.2%) and gentamicin (43.6%), respectively. Among the 183 isolates, 134 (73.2 %) were positive by the MHT. The prevalence rates of blaVIM, blaIMP, and blaKPC were 4 (2.18%), 1 (0.5%), and 0%, respectively.


Conclusion: The prevalence of CRKP strains is a major concern and infection control processes are needed. These gene showed a low prevalence in our country, likely because other mechanisms of resistance to carbapenems are involved.

References
[1] Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev. 1998;11(4):589-603.

[2] Asensio A, Oliver A, González-Diego P, Baquero F, Perez-Diaz JC, Ros P, et al. Outbreak of a multiresistant Klebsiella pneumoniae strain in an intensive care unit: antibiotic use as risk factor for colonization and infection. Clin Infect Dis. 2000;30(1):55-60.

[3] Pitout JD, Laupland KB. Extended-spectrum β-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infec Dis. 2008;8(3):159-66.

[4] Bratu S, Landman D, Haag R, Recco R, Eramo A, Alam M, et al. Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City: a new threat to our antibiotic armamentarium. Arch Intern Med. 2005;165(12):1430-5.

[5] Patel G, Huprikar S, Factor SH, Jenkins SG, Calfee DP. Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infect Control Hosp
Epidemiol. 2008;29(12):1099-106.

[6] Poirel L, Héritier C, Spicq C, Nordmann P. In vivo acquisition of high-level resistance to imipenem in
Escherichia coli. J Clin Microbiol. 2004 ; 42(8): 3831-3

[7] Walsh TR. Emerging carbapenemases: a global perspective. Int J Antimicrob Agents. 2010;36:S8-S14.

[8] Stamdards A. Performance standards for antimicrobial susceptibility testing. Approved Standards CLSI.2010:M100-S20.

[9] Ørstavik I, Ødegaard K. A simple test for penicillinase production in Staphylococcus aureus. Acta Pathologica Microbiologica Acta Pathol Microbiol Scand [B] Immunol. 1971;79(6):855-6.

[10] Reller LB, Weinstein M, Jorgensen JH, Ferraro MJ. Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin Infec Dis. 2009;49(11):1749-55.

[11] Garza-Ramos U, Morfin-Otero R, Sader H, Jones R, Hernandez E, Rodriguez-Noriega E, et al. Metalloβ-lactamase gene blaIMP-15 in a class 1 integron, In95, from Pseudomonas aeruginosa clinical isolates from a hospital in Mexico. Antimicrob Agents Chemother. 2008;52(8):2943-6.

[12] Mirnejhad R, Hashemizadeh FS, Zamanzad B, Jahandideh S, Ansari N, Gholipour A, et al. Identification of KPC-producing Klebsiella pneumoniae in clinical samples in Iran. Yafte J Med Sci. 2013;15(1).

[13] Villegas MV, Lolans K, Correa A, Suarez CJ, Lopez JA, Vallejo M, et al. First detection of the plasmidmediated class A carbapenemase KPC-2 in clinical isolates of Klebsiella pneumoniae from South America. Antimicrob Agents Chemother. 2006;50(8):2880-2.

[14] Queenan AM, Bush K. Carbapenemases: the versatile β-lactamases. Clin Microbiol Rev. 2007;20(3):440-58.

[15] Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW, Steward CD, et al. Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother. 2008;52(2):809.

[16] Ventola CL. The antibiotic resistance crisis: part 1: causes and threats.P T. 2015;40(4):277.

[17] Fernández L, Hancock RE. Adaptive and mutational resistance: role of porins and efflux pumps in drug
resistance. Clin Microbiol Rev. 2012;25(4):661-81.

[18] Tascini C, Tagliaferri E, Giani T, Leonildi A, Flammini S, Casini B, et al. Synergistic activity of colistin plus rifampin against colistin-resistant KPC-producing Klebsiella pneumoniae. Antimicrob Agents Chemother. 2013:AAC. 00179-13.

[19] Leavitt A, Navon-Venezia S, Chmelnitsky I, Schwaber MJ, Carmeli Y. Emergence of KPC-2 and KPC3 in carbapenem-resistant Klebsiella pneumoniae strains in an Israeli hospital. Antimicrob Agents Chemother. 2007;51(8):3026-9.

[20] Naas T, Nordmann P, Vedel G, Poyart C. Plasmid-mediated carbapenem-hydrolyzing β-lactamase KPC in a Klebsiella pneumoniae isolate from France. Antimicrob Agents Chemother. 2005;49(10):4423-4.

[21] Wei Z-Q, Du X-X, Yu Y-S, Shen P, Chen Y-G, Li L-J. Plasmid-mediated KPC-2 in a Klebsiella pneumoniae isolate from China. Antimicrob Agents Chemother. 2007;51(2):763-5.

[22] Won SY, Munoz- *

[23] 0ice LS, Lolans K, Hota B, Weinstein RA, Hayden MK, et al. Emergence and rapid regional spread of Klebsiella pneumoniae carbapenemase–producing Enterobacteriaceae. Clin Infect Dis. 2011;53(6):532-40.

[24] Lari AR, Azimi L, Rahbar M, Fallah F, Alaghehbandan R. Phenotypic detection of Klebsiella pneumoniae
carbapenemase among burns patients: first report from Iran. Burns. 2013;39(1):174-6.

[25] Crespo M, Woodford N, Sinclair A, Kaufmann M, Turton J, Glover J, et al. Outbreak of carbapenemresistant Pseudomonas aeruginosa producing VIM-8, a novel metallo-β-lactamase, in a tertiary care center in Cali, Colombia. J Clin Microbiol. 2004;42(11):5094-101.

[26] Peleg AY, Franklin C, Bell J, Spelman DW. Emergence of IMP-4 metallo-β-lactamase in a clinical isolate from Australia. J Antimicrob Chemother. 2004;54(3):699-700.

[27] El-Kazzaz SS, El-khier NTA. AmpC and metallo beta-lactamases producing Gram negative bacteria in patients with hematological malignancy. Afr J Microbiol Res. 2015;9(18):1247-54.

[28] Kazmierczak KM, Rabine S, Hackel M, McLaughlin RE, Biedenbach DJ, Bouchillon SK, et al. Multiyear, multi-national survey of the incidence and global distribution of metallo-β-lactamase-producing Enterobacteriaceae and P. aeruginosa. Antimicrob Agents Chemother. 2015:AAC. 02379-15.

[29] Lascols C, Hackel M, Marshall SH, Hujer AM, Bouchillon S, Badal R, et al. Increasing prevalence and dissemination of NDM-1 metallo-β-lactamase in India: data from the SMART study (2009). J Antimicrob Chemother. 2011;66(9):1992-7.

[30] Bratu S, Tolaney P, Karumudi U, Quale J, Mooty M, Nichani S, et al. Carbapenemase-producing Klebsiella
pneumoniae in Brooklyn, NY: molecular epidemiology and in vitro activity of polymyxin B and other agents. J Antimicrob Chemother. 2005;56(1):128-32.

[31] Zeighami H, Haghi F, Hajiahmadi F. Molecular characterization of integrons in clinical isolates of betalactamase-producing Escherichia coli and Klebsiella pneumoniae in Iran. J Chemother. 2015;27(3):145-151.

[32] Peymani A, Farivar TN, Ghanbarlou MM, Najafipour R. Dissemination of Pseudomonas aeruginosa producing blaIMP-1 and blaVIM-1 in Qazvin and Alborz educational hospitals, Iran. Iran J Microbiol . 2015;7(6):302.

[33] Safari M, Nejad ASM, Bahador A, Jafari R, Alikhani MY. Prevalence of ESBL and MBL encoding genes in Acinetobacter baumannii strains isolated from patients of intensive care units (ICU). Saudi JBiolSci.2015;22(4):424-9

[34] Faghri J, Pourentezari M, Esmaeily M, Pirouzi S, Sedighi M. Prevalence of metallo-beta-lactamase genes
blaVIM-1 and blaSPM-1 in Pseudomonas aeruginosa Clinical Isolates in Isfahan, Iran. Global J Med Res Study. 2014;1(1):20-7.

[35] Azimi L, Rastegar-Lari A, Talebi M, Ebrahimzadeh-Namvar A, Soleymanzadeh-Moghadam S. Evaluation of phenotypic methods for detection of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae in Tehran. J Med Bacteriol. 2015;2(3-4):26-31.

[36] Bina M, Pournajaf A, Mirkalantari S, Talebi M, Irajian G. Detection of the Klebsiella pneumoniae carbapenemase (KPC) in K. pneumoniae Isolated from the Clinical Samples by the Phenotypic and Genotypic Methods. Iran J Pathol. 2015;10(3):199.

[37] Eftekhar F, Naseh Z. Extended-spectrum β-lactamase and carbapenemase production among burn and non-burn clinical isolates of Klebsiella pneumoniae. Iran J Microbiol. 2015;7(3):144.

[38] Zare A, Akya A, Nejat P. The frequency of blaVIM, blaIMP, blaKPC and blaNDM Carbapenemase genes in clinical isolates of Klebsiella Pneumoniae in Kermanshah medical centers. J Shahid Sadoughi Univ Med Sci. 2015;23(8):760-9.