MicroRNA based Novel Strategies for Cancer Treatment

Abstract

MicroRNAs (mirNAs) have garnered tremendous interest in cancer biology research in the recent decade. mirNAs are a group of short non-coding RNAs,20–24 nucleotides in length, thatare found in animals and plants.They can reduce the expression of genes involved in numerous vital cell processes. Recent evidences indicate a key role played by mirNAs in the initiation and development of human carcinogenesis. These
function including: the regulation of oncogenes, tumor suppressor genes, and several tumor-associated genes to that of processes such as cell proliferation, apoptosis, and angiogenesis. Clinical trials aimed at improving mirNA profiling for clinical diagnosis and prognosis of different disorders are now underway. In this review, we have summarized the physiological role of mirNAs and theirdiagnostic and therapeutic potential inclinical assessment.

References
[1] Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell.2009;136(2):215-33.

[2] Reddy KB. MicroRNA (mirNA) in cancer. Cancer cell Int. 2015;15(1):38.

[3] GAO N, LI L-j. Micro-RNA and cancer. Int J Stomatol Occlusion Med. 2008;5:029.

[4] Garzon R, Calin GA, Croce CM. MicroRNAs in cancer. Annu Rev Med. 2009;60:167-79.

[5] Bruce JP, Hui AB, Shi W, Perez-Ordonez B, Weinreb I, Xu W, et al. Identification of a microRNA signature associated with risk of distant metastasis in nasopharyngeal carcinoma. Oncotarget. 2015;6(6):4537.

[6] Esquela-Kerscher A, Slack FJ. Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer. 2006;6(4):259.

[7] Pourtalebi-Firoozabadi A, Mohamadian M, Parsamanesh N, Moossavi M, Naseri M. Novel Insights to Celiac Disease: A review article. ResMol Med. 2016;4(2):1-8.

[8] Griffiths-Jones S, Grocock RJ, Van Dongen S, Bateman A, Enright AJ. mirBase: microRNA sequences, targets and gene nomenclature. Nucleic acids Res. 2006;34(suppl_1):D140-D4.

[9] He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev
Genet. 2004;5(7):522.

[10] Garzon R, Marcucci G, Croce CM. Targeting microRNAs in cancer: rationale, strategies and challenges. NatRev Drug Discov. 2010;9(10):775.

[11] Bader AG, Brown D, Winkler M. The promise of microRNA replacement therapy. Cancer Res. 2010;70(18):7027-30.

[12] Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11(9):597.

[13] Talmor-Neiman M, Stav R, Frank W, Voss B, Arazi T. Novel micro-RNAs and intermediates of micro-RNA biogenesis from moss. Plant J. 2006;47(1):25-37.

[14] Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. Rna. 2004;10(12):1957- 66.

[15] Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425(6956):415

[16] Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001;409(6818):363.

[17] MacFarlane L-A, R Murphy P. MicroRNA: biogenesis, function and role in cancer. CurrGen. 2010;11(7):537-61.

[18] Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and mirNAs exhibit strand bias. Cell. 2003;115(2):209-16.

[19] Schwarz DS, Hutvágner G, Du T, Xu Z, Aronin N, Zamore PD. Asymmetry in the assembly of the RNAi enzyme complex. Cell. 2003;115(2):199-208.

[20] Doench JG, Sharp PA. Specificity of microRNA target selection in translational repression. GenesDev. 2004;18(5):504-11.

[21] Rajewsky N, Socci ND. Computational identification of microRNA targets. Genome Biol. 2004;5(2):P5.

[22] Cummins J, Velculescu V. Implications of micro-RNA profiling for cancer diagnosis. Oncogene. 2006;25(46):6220.

[23] Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834.

[24] Moossavi M, Parsamanesh N, Bahrami A, Atkin SL, Sahebkar A. Role of the NLRP3 inflammasome in cancer. Mol Cancer. 2018;17(1):158.

[25] Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal TransductTargetTher. 2016;1:15004.

[26] Calin G, Croce C. MicroRNAs and chromosomal abnormalities in cancer cells. Oncogene. 2006;25(46):6202.

[27] Tagawa H, Seto M. A microRNA cluster as a target of genomic amplification in malignant lymphoma. Leukemia. 2005;19(11):2013.

[28] Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, et al. A polycistronic microRNA cluster, mir-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res. 2005;65(21):9628-32.

[29] O’donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. c-Myc-regulated microRNAs modulate E2F1 expression. Nature. 2005;435(7043):839.

[30] Chang T-C, Yu D, Lee Y-S, Wentzel EA, Arking DE, West KM, et al. Widespread microRNA repression by Myc contributes to tumorigenesis. NatGenet. 2008;40(1):43.

[31] Chakraborty C, Sharma AR, Sharma G, Sarkar BK, Lee S-S. The novel strategies for next-generation cancer treatment: mirNA combined with chemotherapeutic agents for the treatment of cancer. Oncotarget. 2018;9(11):10164.

[32] Piperigkou Z, Manou D, Karamanou K, Theocharis AD. Strategies to Target Matrix Metalloproteinases as Therapeutic Approach in Cancer.Methods Mol Biol. 2018. p. 325-48.

[33] Chand M, Keller DS, Mirnezami R, Bullock M, Bhangu A, Moran B, et al. Novel biomarkers for patient stratification in colorectal cancer: A review of definitions, emerging concepts, and data. WJGO. 2018;10(7):145.

[34] Volinia S, Calin GA, Liu C-G, Ambs S, Cimmino A, Petrocca F, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. PNAS. 2006;103(7):2257-61.

[35] Calin GA, Liu C-G, Sevignani C, Ferracin M, Felli N, Dumitru CD, et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. PNAS. 2004;101(32):11755-60.

[36] Karube Y, Tanaka H, Osada H, Tomida S, Tatematsu Y, Yanagisawa K, et al. Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci. 2005;96(2):111-5.

[37] Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drapkin R, Jenuwein T, et al. Dicerdeficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev. 2005;19(4):489-501.

[38] Nelson P, Kiriakidou M, Sharma A, Maniataki E, Mourelatos Z. The microRNA world: small is mighty. Trends BiochemSci. 2003;28(10):534-40.

[39] Hammond SM. microRNA detection comes of age. Nat Methods. 2006;3(1):12.

[40] Xiao F, Bai Y, Chen Z, Li Y, Luo L, Huang J, et al. Downregulation of HOXA1 gene affects small cell lung cancer cell survival and chemoresistance under the regulation of mir-100. Eur JCancer. 2014;50(8):1541-54.

[41] Mattie MD, Benz CC, Bowers J, Sensinger K, Wong L, Scott GK, et al. Optimized highthroughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. MolCancer. 2006;5(1):24.

[42] Shenouda SK, Alahari SK. MicroRNA function in cancer: oncogene or a tumor suppressor? Cancer Metast Rev. 2009;28(3-4):369.

[43] Welch C, Chen Y, Stallings R. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene. 2007;26(34):5017.

[44] Cochetti G, Poli G, Guelfi G, Boni A, Egidi MG, Mearini E. Different levels of serum microRNAs in prostate cancer and benign prostatic hyperplasia: evaluation of potential diagnostic and prognostic role. OncoTargets Ther. 2016;9:7545.

[45] Bianchi F, Nicassio F, Marzi M, Belloni E, Dall’Olio V, Bernard L, et al. A serum circulating mirNA diagnostic test to identify asymptomatic high-risk individuals with early stage lung cancer. EMBO MolMed. 2011;3(8):495-503.

[46] Kjersem J, Ikdahl T, Lingjaerde O, Guren T, Tveit K, Kure E. Plasma microRNAs predicting clinical outcome in metastatic colorectal cancer patients receiving firstline oxaliplatin-based treatment. MolOncol. 2014;8(1):59-67.

[47] Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. PNAS. 2004;101(9):2999-3004.

[48] Lamy P, Andersen C, Dyrskjøt L, Tørring N, Ørntoft T, Wiuf C. Are microRNAs located in genomic regions associated with cancer? BrJCancer. 2006;95(10):1415.

[49] Mishra PJ, Mishra PJ, Banerjee D, Bertino JR. MirSNPs or Mir-polymorphisms, new players in microRNA mediated regulation of the cell: Introducing microRNA pharmacogenomics. Cell Cycle. 2008;7(7):853-8.

[50] Weber B, Stresemann C, Brueckner B, Lyko F. Methylation of human microRNA genes in normal and neoplastic cells. Cell cycle. 2007;6(9):1001-5.

[51] Iorio MV, Ferracin M, Liu C-G, Veronese A, Spizzo R, Sabbioni S, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65(16):7065-70.

[52] Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L, et al. The mir-15a– mir-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. NatMed. 2008;14(11):1271.

[53] Meng F, Henson R, Wehbe–Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133(2):647-58.

[54] Di Leva G, Croce CM. mirNA profiling of cancer. CurrOpinGenetics Dev. 2013;23(1):3-11.

[55] Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szász AM, Wang ZC, et al. RETRACTED: a pleiotropically acting microRNA, mir-31, inhibits breast cancer metastasis. Elsevier; 2009.

[56] Tazawa H, Tsuchiya N, Izumiya M, Nakagama H. Tumor-suppressive mir-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. PNAS. 2007;104(39):15472-7.

[57] Yu S, Lu Z, Liu C, Meng Y, Ma Y, Zhao W, et al. mirNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer. Cancer Res. 2010:0008- 5472. CAN-09-4531.


[58] Liu B, Peng X-C, Zheng X-L, Wang J, Qin Y-W. Mir-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. Lung cancer. 2009;66(2):169-75.


[59] Zhang L, Wang X, Chen P. Mir-204 down regulates SIRT1 and reverts SIRT1-induced epithelial-mesenchymal transition, anoikis resistance and invasion in gastric cancer cells. BMC cancer. 2013;13(1):290.

[60] Zhang BG, Li JF, Yu BQ, Zhu ZG, Liu BY, Yan M. microRNA-21 promotes tumor proliferation and invasion in gastric cancer by targeting PTEN. OncolRep. 2012;27(4):1019-26.

[61] Guessous F, Alvarado-Velez M, Marcinkiewicz L, Zhang Y, Kim J, Heister S, et al. Oncogenic effects of mir-10b in glioblastoma stem cells. JNeuro-Oncol. 2013;112(2):153-63.

[62] Acunzo M, Romano G, Wernicke D, Croce CM. MicroRNA and cancer–a brief overview. Advances in biological regulation. 2015;57:1-9.

[63] Croce CM. Causes and consequences of microRNA dysregulation in cancer. NatRevGenet. 2009;10(10):704.

[64] Iliopoulos D, Jaeger SA, Hirsch HA, Bulyk ML, Struhl K. STAT3 activation of mir-21 and mir-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. MolCell. 2010;39(4):493-506.

[65] Hezova R, Kovarikova A, Bienertova-Vasku J, Sachlova M, Redova M, Vasku A, et al. Evaluation of SNPs in mir-196-a2, mir-27a and mir-146a as risk factors of colorectal cancer. World journal of gastroenterology: WJG. 2012;18(22):2827.

[66] Bendoraite A, Knouf EC, Garg KS, Parkin RK, Kroh EM, O’Briant KC, et al. Regulation of mir-200 family microRNAs and ZEB transcription factors in ovarian cancer: evidence supporting a mesothelial-to-epithelial transition. GynecolOncol. 2010;116(1):117-25.

[67] Galardi S, Mercatelli N, Giorda E, Massalini S, Frajese GV, Ciafrè SA, et al. mir-221 and mir-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. JBiol Chem. 2007. 282(32):23716-24