Comparison of Exhaust Gas Emissions of a Vehicle with an Internal Combustion Engine in High and Low Vehicular Congestion for a High Altitude City

Abstract

Pollution generated by the automotive sector is one of the biggest concerns in the city of Quito. This is due to the fact that the majority of vehicles in the automotive fleet use fossil fuels as a source of propulsion energy. In addition, the heterogeneity of the technologies of the fuel injection systems means that the control of polluting emissions is highly limited. On the other hand, due to the high number of vehicles and the topographical characteristics of the city, high traffic congestion is generated during rush hours, producing abrupt changes in acceleration and reduction of stoichiometric mixtures. Based on the above, it was pertinent to compare the exhaust gas emissions that are produced in high and low vehicular congestion for a vehicle with an internal combustion engine Likewise, the correlations of the gases for both scenarios were determined. To do this, emissions were measured in a Mazda 3 vehicle on a major city route during rush hours and on weekends. A Kane Autoplus gas analyzer was used for exhaust gas measurement, and data logging was done on the Kane Live app. The results showed that in rush hours, the vehicle emits higher amounts of CO2, CO, and HC up to 0.7%; 128.5%; and 65.5%, respectively. There are moderate and strong correlations of O2-CO2 and CO-HC in high and low vehicular congestion, with Pearson’s correlation values greater than 0.5.


Keywords: exhaust gases, internal combustion engine, pollution, route, rush hours, traffic.


Resumen


La contaminación generada por el sector automotriz, es uno de los mayores problemas que enfrenta la ciudad de Quito. Esto se debe a que la mayoría de vehículos del parque automotor, utilizan combustibles fósiles como fuente de energía de propulsión. Además, la heterogeneidad de las tecnologías de los sistemas de inyección de combustible, hace que el control de emisiones contaminantes se limite considerablemente. Por otro lado, debido al elevado número de vehículos y a las características topográficas de la ciudad, se genera una elevada congestión vehicular en horas pico, produciendo cambios abruptos de aceleraciones y reducción de las mezclas estequiométricas. Con base a lo expuesto, fue pertinente comparar las emisiones de gases de escape que se producen en alta y baja congestión vehicular para un vehículo con motor de combustión interna, y así mismo, se determinó las correlaciones de los gases para ambos escenarios. Para ello, se midió las emisiones en un vehículo Mazda 3 sobre una ruta importante de la ciudad en horas pico y fines de semana. Se utilizó un analizador de gases Kane Autoplus para la medición de los gases de escape, y el registro de datos se efectuó en la aplicación Kane Live. Los resultados mostraron que en horas pico, el vehículo emite mayores cantidades de CO2, CO, HC de hasta el 0,77%; 6,66%; 94,69%, respectivamente. Existen moderadas y fuertes correlaciones de O2-CO2 y CO-HC en alta y baja congestión vehicular, con valores de correlación de Pearson superior a 0,5.


Palabras Clave: contaminación, gases de escape, horas pico, motor de combustión interna, ruta, tráfico.

References
[1] Brancato V, Gioiella F, Imparato G, Guarnieri D, Urciuolo F, Netti PA. 3D breast cancer microtissue reveals the role of tumor microenvironment on the transport and efficacy of free-doxorubicin in vitro. Acta Biomater [Internet]. 2018 Jul 15 [citado 29 agosto 2022];75:200–12. Disponible en: https://pubmed.ncbi.nlm.nih.gov/29864516/

[2] Lopez-Arboleda E, Sarmiento AT, Cardenas LM. Systemic approach for integration of sustainability in evaluation of public policies for adoption of electric vehicles. Syst Pract Action Res 2020 344 [Internet]. 2020 Sep 4 [citado 29 agosto 2022];34(4):399– 417. Disponible en: https://link.springer.com/article/10.1007/s11213-020-09540-x

[3] Esposito S, Galeone C, Lelii M, Longhi B, Ascolese B, Senatore L, et al. Impact of air pollution on respiratory diseases in children with recurrent wheezing or asthma. BMC Pulm Med [Internet]. 2014 Ag 7 [citado 29 agosto 2022];14(1):1–9. Disponible en: https://bmcpulmmed.biomedcentral.com/articles/10.1186/1471-2466-14-130

[4] Goldizen FC, Sly PD, Knibbs LD. Respiratory effects of air pollution on children. Pediatr Pulmonol [Internet]. 2016 En 1 [citado 29 agosto 2022];51(1):94–108. Disponible en: https://onlinelibrary.wiley.com/doi/full/10.1002/ppul.23262

[5] Bai L, Su X, Zhao D, Zhang Y, Cheng Q, Zhang H, et al. Exposure to trafficrelated air pollution and acute bronchitis in children: season and age as modifiers. J Epidemiol Community Heal [Internet]. 2018 May 1 [citado 29 agosto 2022];72(5):426– 33. Disponible en: https://jech.bmj.com/content/72/5/426

[6] 7 millones de muertes cada año debidas a la contaminación atmosférica [Internet]. [citado 29 agosto 2022]. Disponible en: https://www.who.int/es/news/item/25-03- 2014-7-million-premature-deaths-annually-linked-to-air-pollution

[7] Estrella B, Estrella R, Oviedo J, Narváez X, Reyes MT, Gutiérrez M, et al. Acute respiratory diseases and carboxyhemoglobin status in school children of Quito, Ecuador. Environ Health Perspect [Internet]. 2005 May [citado 29 agosto 2022];113(5):607–11. Disponible en: http://dx.doi.org/

[8] Santos G. Road transport and CO2 emissions: What are the challenges? Transp Policy. 2017 Oct 1;59:71–4.

[9] Habich-Sobiegalla S, Kostka G, Anzinger N. Electric vehicle purchase intentions of Chinese, Russian and Brazilian citizens: An international comparative study. J Clean Prod. 2018 Dec 20;205:188–200.

[10] Faulin J, Grasman SE, Juan AA, Hirsch P. Sustainable Transportation: Concepts and Current Practices. Sustain Transp Smart Logist Decis Model Solut. 2019 En 1;3–23.

[11] Jicha M, Pospisil J. Influence of vehicle-induced turbulence on pollutant dispersion in street canyon and adjacent urban area. Int J Environ Pollut. 2017;62(2/3/4):89.

[12] Fu H, Chen J. Formation, features and controlling strategies of severe haze-fog pollutions in China. Sci Total Environ. 2017 Feb 1;578:121–38.

[13] Seuwou P, Banissi E, Ubakanma G. The future of mobility with connected and autonomous vehicles in smart cities. Internet of Things [Internet]. 2020 [citado 29 agosto 2022];37–52. Disponible en: https://link.springer.com/chapter/10.1007/978-3- 030-18732-3_3

[14] Jia S, Yan G, Shen A. Traffic and emissions impact of the combination scenarios of air pollution charging fee and subsidy. J Clean Prod. 2018 Oct 1;197:678–89.

[15] Iankov I, Taylor MAP, Scrafton D. Forecasting greenhouse gas emissions performance of the future Australian light vehicle traffic fleet. Transp Res Part A Policy Pract. 2017 May 1;99:125–46.

[16] Huang Y, Ng ECY, Zhou JL, Surawski NC, Chan EFC, Hong G. Eco-driving technology for sustainable road transport: A review. Renew Sustain Energy Rev. 2018 Oct 1;93:596–609.

[17] Lee CT, Lim JS, Fan Y Van, Liu X, Fujiwara T, Klemeš JJ. Enabling low-carbon emissions for sustainable development in Asia and beyond. J Clean Prod. 2018 Mar 1;176:726–35.

[18] Kozina A, Radica G, Nižetić S. Analysis of methods towards reduction of harmful pollutants from diesel engines. J Clean Prod. 2020 Jul 20;262:121105.

[19] Mejdoubi A, Zytoune O, Fouchal H, Ouadou M. A learning approach for road traffic optimization in urban environments. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) [Internet]. 2020 [citado 29 agosto 2022];12081 LNCS:355–66. Disponible en: https://link.springer.com/chapter/10.1007/978-3-030-45778-5_24

[20] Ramos A, Muñoz J, Andrés F, Armas O. NOx emissions from diesel light duty vehicle tested under NEDC and real-word driving conditions. Transp Res Part D Transp Environ. 2018 Ag 1;63:37–48.

[21] Fontaras G, Zacharof NG, Ciuffo B. Fuel consumption and CO2 emissions from passenger cars in Europe – Laboratory versus real-world emissions. Prog Energy Combust Sci. 2017 May 1;60:97–131.

[22] Choudhary A, Gokhale S. Urban real-world driving traffic emissions during interruption and congestion. Transp Res Part D Transp Environ. 2016 Mar 1;43:59–70.

[23] Brachtl M V., Durant JL, Perez CP, Oviedo J, Sempertegui F, Naumova EN, et al. Spatial and temporal variations and mobile source emissions of polycyclic aromatic hydrocarbons in Quito, Ecuador. Environ Pollut. 2009 Feb 1;157(2):528–36.

[24] Air pollution levels rising in many of the world’s poorest cities [Internet]. [citado 29 agosto 2022]. Disponible en: https://www.who.int/en/newsroom/ detail/12-05-2016-air-pollution-levels-rising-in-many-of-the-world-s-poorestcities#. WhOQc25vn1Q.mendeley

[25] Kan Z, Tang L, Kwan MP, Zhang X. Estimating vehicle fuel consumption and emissions using GPS Big Data. Int J Environ Res Public Health [Internet]. 2018 Abr 1 [citado 29 agosto 2022];15(4). Disponible en: https://pubmed.ncbi.nlm.nih.gov/29561813/

[26] Hallmark SL, Wang B, Sperry R. Comparison of on-road emissions for hybrid and regular transit buses. J Air Waste Manag Assoc [Internet]. 2013 [citado 29 agosto 2022];63(10):1212–20. Disponible en: https://pubmed.ncbi.nlm.nih.gov/24282974/

[27] Zhang K, Batterman S, Dion F. Vehicle emissions in congestion: Comparison of work zone, rush hour and free-flow conditions. Atmos Environ. 2011 Abr 1;45(11):1929–39.

[28] Bharadwaj S, Ballare S, Rohit, Chandel MK. Impact of congestion on greenhouse gas emissions for road transport in Mumbai metropolitan region. Transp Res Procedia. 2017 En 1;25:3538–51.

[29] Li R, Meng Y, Fu H, Zhang L, Ye X, Chen J. Characteristics of the pollutant emissions in a tunnel of Shanghai on a weekday. J Environ Sci. 2018 Sep 1;71:136–49.

[30] Milla JL, Cedeño EL, Hoyos JR, Milla JL, Cedeño EL, Hoyos JR. Impacto del Ecodriving sobre las emisiones y consumo de combustible en una ruta de Quito. Enfoque UTE [Internet]. 2020 Jan 31 [citado 29 agosto 2022];11(1):68–83. Disponible en: http://scielo.senescyt.gob.ec/scielo.php?script=sci_arttext&pid=S1390- 65422020000100068&lng=es&nrm=iso&tlng=es

[31] Cedeño EAL, Rocha-Hoyos JC, Zurita DBP, Milla JCL. Evaluation of gas emissions in light gasoline vehicles in height conditions. Case study Quito, Ecuador. Enfoque UTE [Internet]. 2018 En 19 [citado 29 agosto 2022];9(2):149–58. Disponible en: http://scielo.senescyt.gob.ec/scielo.php?script=sci_arttext&pid=S1390- 65422018000200149&lng=es&nrm=iso&tlng=es

[32] Tipanluisa LE, Remache AP, Ayabaca CR, Reina SW. Emisiones Contaminantes de un Motor de Gasolina Funcionando a dos Cotas con Combustibles de dos Calidades. Inf tecnológica [Internet]. 2017 Feb 1 [citado 29 agosto 2022];28(1):03– 12. Disponible en: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718- 07642017000100002&lng=es&nrm=iso&tlng=es