Electronic Design of a DC-DC Boost Converter for Powering a Lo-Ra Communication Board with Bioelectricity by “Plantas Andinas”

Abstract

The use of bioelectricity in various areas of science has made it indispensable to resort to new technologies to take full advantage of this natural resource. Plants are living beings, and through their biochemical processes produce a small amount of electricity derived from oxidation-reduction processes. For this reason, it is proposed to use electronic and power techniques to increase the flow of electrons produced by plants of Andean characteristics, and consequently feed a Lo-Ra type communication card, meeting the needs of long-distance data transmission, used in the collection of field information, either in areas where access or availability of power lines is complex. This proposal motivates us to continue working on sustainable energy and the exploitation of natural resources. This document details the theory, practice, and methods used to meet the objective of supplying power to a wireless communication system over a long distance. First, a description of the most important issues to be addressed is developed, and then special focus is given to the design for development of the power electronics circuit, specifically an elevator type DC-DC converter. Finally, the results obtained through the implementation used in this case are documented.


Keywords: bioelectricity, MFC, boost-converter, Andean plants, totora, Lo-Ra TTGO.


Resumen


El uso de bioelectricidad en diversas áreas de la ciencia ha hecho indispensable recurrir a nuevas tecnologías para aprovechar al máximo este recurso natural. Las plantas, como seres vivos, producen una pequeña cantidad de electricidad a través de sus procesos bioquímicos, derivada de procesos de oxidación-reducción. Por esta razón, se propone utilizar técnicas electrónicas y de potencia para aumentar el flujo de electrones producidos por plantas de características andinas, y alimentar así una tarjeta de comunicación de tipo Lo-Ra, satisfaciendo las necesidades de transmisión de datos a larga distancia, utilizadas en la recolección de información de campo, ya sea en áreas donde el acceso o la disponibilidad de líneas eléctricas es compleja Esta propuesta motiva a continuar trabajando en energía sostenible y en la explotación de recursos naturales. Este documento detalla la teoría, práctica y los métodos utilizados para cumplir con el objetivo de suministrar energía a un sistema de comunicación inalámbrico a larga distancia. En primer lugar, se desarrolla una descripción de los temas más importantes a abordar, y luego se presta especial atención al desarrollo del diseño del circuito de electrónica de potencia, específicamente un convertidor DC-DC tipo elevador; y finalmente, se documentan los resultados obtenidos a través de la implementación utilizada en este caso.


Palabras Clave: bioelectricidad, CCM, convertidor-elevador, plantas andinas, totora, TTGO Lo-Ra.

References
[1] Corrales LC, Antolinez Romero DM, Bohórquez Macías JA, Corredor Vargas AM. Bacterias anaerobias: procesos que realizan y contribuyen a la sostenibilidad de la vida en el planeta. Nova. 2015;13(24):55–81.

[2] Góngora Molina AC, Mancilla Ochoa J, Sosa Assi ME, Vázquez Borges E. 2017. Energía: celdas de combustible microbianas. 21(1):54-62.

[3] Figueredo F, Olaya A, Cortón E. Celdas de combustible biológicas basadas en metabolismo fotosintético. 2014;13(3):174-186.

[4] Ahern KG. Biochemistry and molecular biology: How life works. Chantilly (VA): Teaching Company; 2014.

[5] Audesirk T, Audesirk G, Byers BE. Biología: La vida en la tierra con fisiología. Pearson Educación de México, SA de CV; 2013.

[6] Osorio-de-la-Rosa E, Vazquez-Castillo J, Castillo-Atoche A, Heredia-Lozano J, Castillo-Atoche A, Becerra-Nunez G, et al. Arrays of plant microbial fuel cells for implementing self-sustainable wireless sensor networks. IEEE Sensors Journal. 2021;21(2):1965–1974.

[7] De Schamphelaire L, Cabezas A, Marzorati M, Friedrich MW, Boon N, Verstraete W. Microbial community analysis of anodes from sediment microbial fuel cells powered by rhizodeposits of living rice plants. Applied and Environmental Microbiology. 2010 Mar;76(6):2002–2008.

[8] Cabezas A, Pommerenke B, Boon N, Friedrich MW. Geobacter, Anaeromyxobacter and Anaerolineae populations are enriched on anodes of root exudate-driven microbial fuel cells in rice field soil. Environmental Microbiology Reports. 2015 Jun;7(3):489–497.

[9] Pérez-Escobar OA, Zizka A, Bermúdez MA, Meseguer AS, Condamine FL, Hoorn C, et al. The Andes through time: evolution and distribution of Andean floras. Trends in Plant Science. 2022 Apr;27(4):364–378.

[10] Blanco J. Suitability of Totora (Schoenoplectus californicus (C.A. Mey.) Soják) for its use in constructed wetlands in areas polluted with heavy metals. Sustainability (Basel). 2018;11(1):19.

[11] Hidalgo-Cordero JF, García-Navarro J. Totora (Schoenoplectus californicus (C.A. Mey.) Soják) and its potential as a construction material. Industrial Crops and Products. 2018;112:467–480.

[12] MacÍa MJ, Balslev H. Use and management of Totora (Schoenoplectus Californicus, Cyperaceae) in Ecuador. Economic Botany. 2020;54(1):82–89.

[13] Heiser C. The Totora (Scirpus Californicus) in Ecuador and Peru. Economic Botany. 1978;32(3):222–236.

[14] Palacios Carvajal MJ, Gualli Bonilla DA, Manzano Cepeda MR. Planta de Totora en humedal artificial de flujo subsuperficial. 2020. Available from: https://www.eumed.net/rev/caribe/2020/09/planta-totora.html

[15] Franco M del R, Medici SM, Okada E, Pérez DJ. Biorremediación de aguas contaminadas por actividade agropecuarias: Uso de la planta acuática Typha spp. (totora) como organismo fitorremediador. 2021;28(140):42-45.

[16] González T, Puigagut J, Vidal G. Organic matter removal and nitrogen transformation by a constructed wetland-microbial fuel cell system with simultaneous bioelectricity generation. Science of The Total Environment. 2021 Jan;753:142075.

[17] Chiranjeevi P, Yeruva DK, Kumar AK, Mohan SV, Varjani S. Plantmicrobial fuel cell technology. En: microbial electrochemical technology [Internet]. Elsevier; 2019 [cited 29 March 2023]. 549-564. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780444640529000224 https://doi.org/10.1016/B978-0-444-64052-9.00022-4.

[18] Mathews CK. Bioquímica. 4a. Madrid: Pearson Educación; 2013.

[19] Kumar S, Usmam A. Effective design analysis of a DC-DC boost converter with experimental validation. En: 2018 Internat2018 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC)ional conference on computation of power, energy, Information and Communication (ICCPEIC) [Internet]. Chennai, India: IEEE; 2018 [cited 31 March 2023].261-268. Available from: https://ieeexplore.ieee.org/document/8525165/ https://doi.org/10.1109/ICCPEIC.2018.8525165.

[20] Forouzesh M, Siwakoti YP, Gorji SA, Blaabjerg F, Lehman B. Step-up DC-DC converters: A comprehensive review of voltage-boosting techniques, topologies, and applications. IEEE Transactions on Power Electronics. 2017;32(12):9143–9178.