Diesel Hydrodesulfurization and its Impact on the Fuel Market in Ecuador: A Review

Abstract

This article examines the hydrodesulfurization process used to produce diesel with low sulfur content in Ecuador. The analysis covers the level of processing in the country, the quality of domestic diesel compared to other nations, and the technical and economic requirements of the process. It also explores the need to modify or upgrade catalysts to achieve deep hydrodesulfurization.. Unfortunately, the review found that sulfur content in Ecuadorian deposits is very high, with 3.53 MMkg produced in 2018. Despite improvements in the country’s refineries, diesel sulfur content has only been reduced to 110 ppm.. Ecuador regulates sulfur emissions through the Ecuadorian standard NTE INEN-1489 (2012). This norm classifies the fuel into three types, diesel #1 (3000 ppm), diesel #2 (7000 ppm), and premium diesel (500 ppm), following the use of diesel both in the industrial and transportation sectors. However, Ecuador seeks to adjust to countries with stricter regulations, such as the European Union. The standard that regulates sulfur emissions in this community is Euro VI, which limits the concentration to 10 ppm. One of the challenges in achieving international standards in the hydrodesulfurization units of the Ecuadorian refineries is to modify or improve the catalytic systems. Trimetallic catalysts, both supported and unsupported, can help overcome this challenge by decomposing the refractory molecules (e.g., dibenzothiophene and 4,6-dimethyldibenzothiophene) found in deep hydrodesulfurization. These catalysts can handle molecules that commonly used catalysts such as CoMo or MoW cannot. Therefore, proposals such as using trimetallic catalysts to achieve deep hydrodesulfurization levels are techno-economic options for Ecuador.


Keywords: diesel, sulfur, Ecuador, hydrodesulfurization, refineries, catalyst.

References
[1] Gad S. Diesel fuel. In: Wexler P, editor. Encyclopedia of toxicology. 3rd ed. Burlington, USA: Elsevier; 2014; 115–118.

[2] Martin-Algarra R. Motor diesel, aceite o combustible diesel, biodiesel, petrodiesel. Eponimos Científicos. 2010. Available at: https://blog.uchceu.es/eponimoscientificos/ motor-diesel-aceite-o-combustible-diesel-biodiesel-petrodiesel/

[3] Nayibe C, Santana C, Sergio I, Papacristofilou S. Derivados del petroleo, el diesel. Direccion de Movilidad y Transporte (CONUEE). 2017. Available at: https://www.studocu.com/en-us/document/ventura-college/diesel-fuelmanagement- systems/other/derivados-del-petroleo-diesel/5361544/view

[4] Garces L, Hernandez M. La lluvia acida: un fenomeno fisicoquimico de ocurrencia local. Revista Lasallista de Investigacion. 2004;1:67–72. Available from: http://www.redalyc.org/articulo.oa?id=69510211

[5] Gimenez X. Investigacion y Ciencia. 2015. Available at: https://www.investigacionyciencia.es/blogs/fisica-y-quimica/39/posts/la-lluvia-cidahoy- 13261

[6] Alonso M. Desarrollo de catalizadores de NiMoW/Ti-SBA-16 y su aplicación en remoción de azufre en la HDS de DBT.

[master’s degree thesis]. Morelia, Mexico: Universidad Michoacana de San Nicolás de Hidalgo; 2014.

[7] El-Gendy N, Speight J. Handbook of refinery desulfurization. 1st ed. Boca Raton, USA: CRC Press; 2016.ISBN: 978-1-4665-9672-6.

[8] Petroecuador EP. Cifras Institucionales. Reporte del sector petrolero. Informes estadisticos anuales. 2021. Available at: https://www.eppetroecuador.ec/?p=3721

[9] Company BP. Statistical review of world energy 2021. 2022. Available at: https://www.bp.com/en/global/corporate/energy-economics/statistical-review-ofworld- energy.html

[10] Petroecuador EP. Cifras Institucionales. Analisis del sector petrolero. 2022. Available at: https://contenido.bce.fin.ec/documentos/Estadisticas/Hidrocarburos/ ASP202201.pdf

[11] Dieselnet 2015. Fuel Regulations. EU: fuels: automotive diesel fuel. Available at: https://dieselnet.com/standards/eu/fuel_automotive.php.

[12] Benavides I, Jacome S. Diseno y simulacion de la unidad de hidrodesulfuracion de diesel para una nueva refineria. [master’s degree thesis]. Quito, Ecuador: Escuela Politecnica Nacional; 2016.

[13] Petroecuador EP. Petroecuador mejora la calidad de diésel que se procesa en Refinería Esmeraldas. 2020. Available at: https://www.eppetroecuador.ec/?p=5489. (accessed on 15 Sep 2022).

[14] de J. Analisis de los efectos producidos por la variacion de soporte en el sistema NiW usado en la HDS de DBT. 2020 Jun 2.

[15] Almeida-Naranjo C, Jacome E, Soria J. Biodiesel market share in Ecuador: current situation and perspectives. Materials Today: Proceedings. 2022;49:202–209.

[16] Kaltschmitt T, Deutschmann O. Fuel processing for fuel cells. Advance Chemical Engineering. 2012;41:1–64.

[17] INEN. Norma tecnica ecuatoriana, NTE INEN-1489. Instituto Ecuatoriano de Normalización: Quito, Ecuador. 2012. Available at: https://www.normalizacion.gob.ec/buzon/normas/nte_inen_1489-8.pdf

[18] ISO. Standard specification for diesel fuel oils, ASTM D975. Geneva, Switzerland: International Standards Organization; 2007.

[19] Santillana J, Salinas J. Petroperu busca evaluar la produccion de combustibles vehiculares que cumplan las regulaciones Euro V y Euro VI. Educacion en Ingenieria. 2018. Available at: https://www.ssecoconsulting.com/pmrt-evalua-produccion-dieseleuro- vi.html

[20] Flores R, Bonilla P. Perfil de la lluvia acida en la ciudad de Quito (Ecuador) durante los meses de Diciembre-2008 y Enero-2009. Quimica Central. 2010;1(1):27–34.

[21] Ramos F. Analisis del proceso de hidrodesulfuracion y de alternativas para mejorar la remocion de azufre en el diesel producido en la Refnineria de Esmeraldas. [undergraduate thesis]. Universidad Tecnologica Equinoccial: Quito, Ecuador. Available at: http://repositorio.ute.edu.ec/handle/123456789/5218

[22] Quian W, Ishihara A, Wang G, Tsuzuki T, Godo M, Kabe T. Elucidation of behavior of sulfur on sulfided Co-Mo/Al2O3 using a 35S radioisotope pulse tracer method. J Catal. 1997;170(2):286–294.

[23] Speight J. The desulfurization of heavy oils and residua. 2nd edition. New York, USA: Marcel Dekker Inc.; 2000.ISBN: 0824715063.

[24] Topsoe H, Clausen B, Massoth F. Hydrotreating catalysis. In: Anderson J, Boudart M, editors. Catalysis science and technology. 1st ed. Berlin, Germany: Springer; 1996; 1–269.

[25] Lizama L. Desarrollo de catalizadores de hidrodesulfuracion preparados a partir de heteropoliacidos soportados en SBA-15 modificado con Al, Zr y Ti. [PhD tesis]. Universidad Nacional Autonoma de Mexico: Ciudad de Mexico, Mexico; 2009. Available at: https://ru.dgb.unam.mx/handle/DGB_UNAM/TES01000651030

[26] Zhang W, Sun M, Prins R. A high-resolution MAS NMR study of the structure of fluorinated NiW/Al2O3 hydrotreating catalysts. The Journal of Physical Chemistry B. 2003;107(40):10977–10982.

[27] Tischer R, Narain N, Stiegel G, Cillo D. Effect of phosphorus on the activity of nickel-molibdenum/alumina coal-liquid upgrading catalysts. Industrial & Engineering Chemistry Research. 1987;26(3):422–426.

[28] Telleria N, Pinto-Castilla S, Betancourt P. Escalamiento en la sintesis del catalizador V-NiMo/Al2O3. Sociedad Venezolana de Catalisis. 342-349. ISBN: 978-980-12-8324- 9. 2015.

[29] Marafi M, Stanislaus A, Furimsky E. Handbook of spent hydroprocessing catalysts. 2nd edition. Amsterdam, Netherlands: Elsevier; 2017.ISBN: 978-0-444-63881-6.

[30] Kanda Y, Temma C, Nakata K, Kobayashi T, Sugioka M, Uemichi Y. Preparation and performance of noble metal phosphides supported on silica as new hydrodesulfurization catalysts. Applied Catalysis A: General. 2010;386(1-2):171–178.

[31] Qu L, Zhang W, Kooyman P, Prins R. MAS NRM, TPR and TEM studies of the interaction of NiMo with alumina and silica-alumina supports. Journal of Catalysis. 2003;215(1):7–13.

[32] Duchet J, Van Oers E, de Beer V, Prins R. Carbon-supported sulfide catalysts. Journal of Catalysis. 1983;80(2):386–402.

[33] de Beer V, Derbyshire F, Groot C, Prins R, Scaroni A, Solar J. Hydrodesulphurization activity and coking propensity of carbon and alumina supported catalysts. Fuel 638, 1095-1100. 1984. https://doi.org/10.1016/0016-2361(84)90194-7

[34] Groot C, van Der Kraan A, de Beer V, Prins R. Carbon-supported iron sulfide catalysta. Bulletin des Sociétés Chimiques Belges. 1984;93(8-9):707–718.

[35] Prabhu N, Dalai A, Adjaye J. Hydrodesulphurization and hydrodenitrogenation of light gas oil using NiMo catalysts supported on functionalized mesoporous carbon. Applied Catalysis A: General. 2011;401(1-2):1–11.

[36] Liu N, Wang X, Xu W, Hu H, Liang J, Qiu J. Microwave-assisted synthesis of MoS2/graphene nanocomposites for efficient hydrodesulfurization. Fuel. 2014;119:163–169.

[37] Aridi T, Al-Daous M. HDS of 4,6-dimethyldibenzothiophene over MoS2 catalysts supported on macroporous carbon coated with aluminosilicate nanoparticles. Applied Catalysis A: General. 2009;359(1-2):180–187.

[38] Davis ME. Ordered porous materials for emerging applications. Nature. 2002 Jun;417(6891):813–821.

[39] Soghrati E, Kazemeini M, Rashidi A, Jozani K. Preparation and characterization of Co-Mo catalyst supported on CNT coated cordierite monoliths utilized for naphta HDS process. Procedia Engineering. 2012;42:1484–1492.

[40] Soghrati E, Kazemeini E, Rashidi A, Jozani K. Development of a structured monolithic support with a CNT washcoat for the naphtha HDS process. Journal of the Taiwan Institute of Chemical Engineers. 2014;45(3):887–895.

[41] Mendoza-Nieto J, Vizueth-Montes de Oca A, Calzada L, Klimova T. Trimetallic NiMoW and CoMoW catalysts supported on SBA-15 modified with titania or zirconia for deep hydrodesulfurization. Catalysis Today. 2019;360:78–89.

[42] Liu Y, Xu B, Qin B, Chengzhou T, Cao L, Shen Y. Novel NiMoW-clay hybrid catalyst for highly efficient hydrodesulfurization reaction. Catalysis Communications. 2020;144:106086.

[43] Soled S, Miseo S, Krikak R, Vroman H, Ho T, Riley K. Nickel molybodtungstate hydrotreating catalysts (law444). Patent Nro. 6,299,760 B. United States, Oct. 9, 2001. Available at: https://patents.google.com/patent/US6299760B1/en

[44] Miller J, Braun C. Cost-benefit analysis of euro VI heavy-duty emission standards in Argentina. The International Council on Clean Transportation; 2020; 1–28.