Application of Sustainable Remediation Techniques for Heavy Metal Reduction in Polluted Rivers in Mining Zones: Study Area Ponce Enriquez

Abstract

Mining activity in Ecuador is primarily artisanal and small-scale. Rivers near the mining county of Camilo Ponce Enriquez have been severely affected by this type of mining. A field study was conducted encompassing 29 sites on the rivers Siete, Fermin, and Pagua during sampling campaigns that took place in both dry (December) and wet seasons (February). Physiochemical parameters and heavy metal concentrations were measured to enable environmental characterization of the rivers. Results revealed that most of the sampled sites had bad water quality and exceeded the environmental limits of heavy metal concentrations set by the Ecuadorian government. A parallel pilot investigation was performed for reducing the heavy metal concentrations in water ecosystems polluted by mining activities using bioremediation techniques. The bioremediation technique applied in the study used bacteria from a wastewater digestor and sugarcane bagasse as a carbon source to support the bacterial community. Sulfide was measured to monitor bacterial activity in experimental bioreactors containing local acid mine drainage (AMD). The results obtained were encouraging, as a significant decrease in heavy metal concentration was observed to nearly the level of Ecuadorian environmental regulations for Al, Cd, Cu, Fe, Pb, and Zn concentrations in freshwater in a set of bioreactors.


Keywords: acid drainage, artisanal mining, bioremediation, heavy metals, pollution.


Resumen


La actividad minera en el Ecuador es principalmente artesanal y de pequeña escala. Los ríos cercanos al área minera de Camilo Ponce Enríquez se han visto severamente afectados por este tipo de minería. Se realizó un estudio de campo en 29 sitios sobre los ríos Siete, Fermín y Pagua durante campañas de muestreo que se realizaron tanto en la época seca (diciembre) como en época húmeda (febrero). Se midieron parámetros fisicoquímicos y concentraciones de metales pesados para permitir la caracterización ambiental de los ríos. Los resultados revelaron que la mayoría de los sitios muestreados tienen agua de mala calidad y excedieron los límites ambientales de concentración de metales pesados establecidos por el gobierno ecuatoriano. También se realizó una investigación piloto paralela destinada a reducir las concentraciones de metales pesados en ecosistemas acuáticos contaminados por actividades mineras utilizando técnicas de biorremediación. La técnica de biorremediación aplicada en el estudio utilizó bacterias de un digestor de aguas residuales y bagazo de caña de azúcar como fuente de carbono para apoyar a la comunidad bacteriana. Se midió el sulfuro para controlar la actividad bacteriana en biorreactores experimentales que contenían drenaje ácido minero (AMD) local. Los resultados obtenidos son alentadores ya que en un conjunto de biorreactores se observó una disminución significativa de las concentraciones de algunos metales pesados alcanzando casi en su mayoría el nivel permisible según las regulaciones ambientales ecuatorianas para las concentraciones de Al, Cd, Cu, Fe, Pb y Zn en agua dulce.


Palabras Clave: drenajes ácidos, minería artesanal, biorremediación, metales pesados, contaminación.

References
[1] Banco Central del Ecuador (BCE). 2016. Reporte de Mineria: 4-5. Disponible en: https://contenido.bce.fin.ec/documentos/Estadisticas/Hidrocarburos/ ReporteMinero072016.pdf

[2] Education for the Transformation of Artisanal to Small-scale Mining, Ecuador (TransMAPE) [Internet]. Canada: Canadian International Resources and Development Institute (CIRDI); 2018 [actualizada en diciembre de 2022; acceso 20 marzo 2023]. [approx.. 5 pantallas]. Disponible en: https://web.archive.org/web/20220715171813/https://cirdi.ca/project/transmape/

[3] Banco Central del Ecuador (BCE). 2018. Reporte de Minería: 6-7. Disponible en: https://contenido.bce.fin.ec/documentos/Estadisticas/Hidrocarburos/ ReporteMinero012018.pdf

[4] Ley de Minería. Registro Oficial Suplemento 517 de enero 29 de 2009. Articulo 138: 50-51. Disponible en: https://www.gob.ec/sites/default/files/regulations/2020- 12/Documento_Ley-de-Miner%C3%ADa.pdf

[5] Betancourt O, Barriga R, Guimaraes JR, Cueva E, Betancourt S. Impacts on environmental health of small-scale gold mining in Ecuador. En: Charron D. (eds). Ecohealth research in Practice. Vol 1. New York, NY: Springer; 2012. p. 119-130.

[6] Carling G, Diaz X, Ponce M, Perez L, Nasimba L, Pazmino E, et al. Particulate and dissolved trace element concentrations in three Southern Ecuador Rivers impacted by artisanal gold mining. Water, Air, and Soil Pollution. [Internet]. 2013 [citado 2 mayo 2022];224(415):1-16. Disponible en: https://link.springer.com/article/10.1007/s11270- 012-1415-y

[7] Adler R, Bergquist B, Adler S, Guimaraes JR, Lees P, Niquen W, et al. Challenges to measuring, monitoring, and addressing the cumulative impacts of artisanal and small-scale gold mining in Ecuador. Resources Policy. [Internet]. 2013 [citado 3 mayo 2022];38:713-722. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0301420713000202.

[8] Banco Central del Ecuador (BCE). 2017. Reporte de Mineria: 15-18. Disponible en: https://contenido.bce.fin.ec/documentos/Estadisticas/Hidrocarburos/ ReporteMinero012017.pdf

[9] Appleton J, Williams T, Orbea H, Carrasco M. Fluvial contamination associated with artisanal gold mining in the Ponce Enriquez, Portovelo-Zaruma and Nambija Areas, Ecuador. Water, Air, and Soil Pollution [Internet]. 2001 [citado 14 enero 2022];131:19- 39. Disponible en: https://link.springer.com/article/10.1023/A:1011965430757

[10] Cordy P, Veiga M, Salih I, Al-Saadi S, Console S, Garcia O, et al. Mercury contamination from artisanal gold mining in Antioquia, Colombia: The world’s highest per capita mercury pollution. Science of the Total Environment. 2011; 410-411:154-160.

[11] Velasquez-Lopez P, Veiga M, Klein B, Shandro J, Hall K. 2011 Cyanidation of mercury rich tailings in artisanal and small-scale gold mining: Identifying strategies to manage environmental risks in Southern Ecuador. Journal of Cleaner Production. 2011;19:1125- 1133.

[12] Cordy P, Veiga M, Crawford B, Garcia O, Gonzalez V, Moraga D, et al. Characterization, mapping, and mitigation of mercury vapour emissions from artisanal mining gold shops. Environmental Research. 2013:125:82-91.

[13] Veiga M, Angeloci-Sanos G, Meech J. Review of barriers to reduce mercury use in artisanal gold mining. The Extractive Industries and Society. 2014:1:351-361.

[14] Hruba F, Stromberg U, Cerna M, Chen C, Harari F, Harari R, et al. Blood cadmium, mercury, and lead in children: An international comparison of cities in six European countries, and China, Ecuador, and Morocco. Environmental International.2012;41:29- 34.

[15] Akcil A, Koldas S. Acid mine drainage (AMD): Causes, treatment and case studies. Journal of Cleaner Production [Internet]. 2006 [citado 20 marzo 2023]; 14: 1139-1145. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0959652605000600

[16] Neculita C, Zagury G, Bussiere B. Effectiveness of sulfate-reducing passive bioreactors for treating highly contaminated acid mine drainage: I. Effect of hydraulic retention time. Applied Geochemistry [Internet]. 2008 [citado 20 marzo 2023];3:3442-3451. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0883292708002862

[17] Jamil N, Clarke W. Bioremediation for acid mine drainage: organic solid waste as carbon sources for sulfate-reducing bacteria: a review. Journal of Mechanical Engineering and Sciences [Internet]. 2013 [citado 22 marzo 2023];5:569- 581. Disponible en: https://www.researchgate.net/publication/273050475_ Bioremediation_for_Acid_Mine_Drainage_Organic_Solid_Waste_as_Carbon_ Sources_For_Sulfate-Reducing_Bacteria_A_Review

[18] Jimenez-Oyola S, Garcia-Martinez M, Ortega M, Chavez E, Romero P, Garcia- Garizabal I, et al. Ecological and probabilistic human health risk assessment of heavy meta(loids) in river sediments affected by mining activities in Ecuador. Environmental Geochemical Health [Internet]. 2021 [citado 15 junio 2022];43:4459-4474. Disponible en: https://link.springer.com/article/10.1007/s10653-021-00935-w

[19] Jimenez-Oyola S, Chavez E, Garcia-Martinez M., Ortega M, Bolonio D, Guzman- Martinez F, et al. Probabilistic multi-pathway human health risk assessment due to heavy metal(loids)s in a traditional gold mining area in Ecuador. Ecotoxicology and Environment Safety [Internet]. 2021 [citado 15 junio 2022];224:112629. Disponible en: https://www.sciencedirect.com/science/article/pii/S0147651321007417

[20] Rivera J, Beate B, Diaz X, Ochoa M. Artisanal and small gold mining and petroleum production as potential sources of heavy metal contamination in Ecuador: A call to action. International Journal of Environmental Research and Public Health [Internet]. 2021. [citado 20 junio 2022];18(6):2794. Disponible en: https://www.mdpi.com/1660- 4601/18/6/2794

[21] Aguilar A, Pena E, Vitvar T, Lopez M, Menendez-Aguado J. A multi-index analysis approach to heavy metal pollution assessment in river sediments in the Ponce Enriquez Area, Ecuador. Water [Internet]. 2019. [citado 20 junio 2022]; 11(3): 590. Disponible en: https://www.mdpi.com/2073-4441/11/3/590

[22] Rhon J. Plan integral de gestion de riesgos para las areas mineras “Bella Rica”, codigo 15 y “Guanache Tres de Mayo”, codigo 150. [Internet]. Camilo Ponce Enriquez. 2014. [citado 15 julio 2022]. Disponible en: https://www.academia.edu/10883561/COOPERATIVA_DE_PRODUCCI%C3%93N_ MINERA_AUR%C3%8DFERA_BELLA_RICA_ECUADOR_PLAN_INTEGRAL_DE_ GESTI%C3%93N_DE_RIESGOS_PARA_LAS_%C3%81REAS_MINERAS_BELLA_ RICA_c%C3%B3digo_15_y_GUANACHE_TRES_DE_MAYO_c%C3%B3digo_150_ RESUMEN_EJECUTIVO

[23] Tarras-Wahlberg H, Flachier A, Fredriksson G, Lane S, Lundberg B., Sangfors O. Environmental impact of small-scale and artisanal gold mining in southern Ecuador. AMBIO A Journal of the Human Environment [Internet]. 2000. [citado 2 julio 2022];29(8):484-491. Disponible en: https://www.researchgate.net/publication/232669664_Environmental_Impact_of_ Small-scale_and_Artisanal_Gold_Mining_in_Southern_Ecuador

[24] Elliott P, Ragusa S, Catcheside D. Growth of sulfate-reducing bacteria under acidic conditions in an upflow anaerobic bioreactor as a treatment system for acid mine drainage. Water Research [Internet]. 1998. [citado 3 marzo 2023];32(12):3724-3730. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0043135498001444

[25] Grubb D, Landers D, Almeida Guerra P, Miller B, Bilgin A, Hernandez M. Sugarcane bagasse as a microbial host media for the passive treatment of acid mine drainage. Journal of Environmental Engineering [Internet]. 2018. [citado 14 julio 2022];144(10):04018108. Disponible en: https://www.researchgate.net/publication/ 327993473_Sugarcane_Bagasse_as_a_Microbial_Host_Media_for_the_Passive_ Treatment_of_Acid_Mine_Drainage

[26] Tripathi AK, Thakur P, Saxena P, Rauniyar S, Gopalakrishnan V, Singh RN, et al. Gene sets and Mechanisms of sulfate-reducing bacteria biofilm formation and quorum sensing with impact on corrosion. Front. Microbiol. [Internet]. 2021. [citado 1 marzo 2023];12:754140. Disponible en: https://www.frontiersin.org/articles/10.3389/fmicb.2021.754140/full

[27] Munoz E, Farre A, Sanchez A, Font X, Gea T. Microbial biosufactants: a review of recent environmental applications. Bioengineered [Internet]. 2022. [citado 1 marzo 2023];13(5):12365-12391. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9275870/