Recovery of Total Chromium from Tannery Wastewater by Carbonization Application

Abstract

A carbonization process was carried out for the recovery of chromium from wastewater by chemical treatment with sodium hydroxide as a basic solution in contact with the precursor material at different concentrations [1:0.15 (%w/w) - 1:0.20 (%w/w)]. The physical treatment was carried out with carbonization at 700∘C for a period of 2 hours. The obtained samples were characterized by elemental analysis, thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), atomic absorption spectroscopy, and surface area analysis (BET) to validate the evidence of metal recovery. The results indicate that the percentage of total chromium recovery was 47.62% with respect to the uncarbonized material, establishing that the best carbonization variables are at 700∘C and concentration 1:0.20% w/w for 2 hours.


Keywords: tannery industry, carbonization, recovery, total chromium.


Resumen


Se realizó un proceso de carbonización para la recuperación de cromo a partir de aguas residuales mediante un tratamiento químico con hidróxido de sodio como solución básica en contacto con el material precursor a diferentes concentraciones [1:0,15 (%p/p)- 1:0,20 (%p/p)], el tratamiento físico se realizó con la carbonización a 700∘C por un lapso de 2 horas. Las muestras obtenidas se caracterizaron mediante análisis elemental, análisis termogravimétrico (TGA), espectroscopia infrarroja por transformada de Fourier (FT-IR), espectroscopia de absorción atómica y análisis de área superficial (BET) para validar la evidencia de la recuperación del metal. Los resultados indican que el porcentaje de recuperación de cromo total es de 47,62% respecto del material sin carbonizar estableciendo que las mejores variables de carbonización son 700 ∘C y concentración 1:0.20 %p/p por 2 horas.


Palabras Clave: Industria curtiembre, carbonización, recuperación, cromo total.

References
[1] Mohammed K, Sahu O. Recovery of chromium from tannery industry waste water by membrane separation technology: health and engineering aspects. Scientific African. 2019;4:e00096.

[2] Ahmed D, Maraz K, Khan R. Prospects and challenges of chrome tanning: approach a greener technology in leather industry. Scientific Review. (Singap). 2021;7(73):42–49.

[3] Kanagaraj J, Chandra B, Mandal A. Recovery and reuse of chromium from chrome tanning waste water aiming towards zero discharge of pollution. Journal of Cleaner Production. 2008;16(16):1807–1813.

[4] Gonzalez A, Alana T, Gonzaga S. La gestion ambiental en la competitividad de las PYMES del Ecuador. INNOVA Research Journal. 2017;2(8.1):236–248.

[5] Shaikjee A, Coville N. The synthesis, properties and uses of carbon materials with helical morphology. Journal of Advanced Research. 2011;3(3):195–223.

[6] Burbridge DJ, Koch I, Zhang J, Reimer KJ. Chromium speciation in river sediment pore water contaminated by tannery effluent. Chemosphere. 2012 Oct;89(7):838– 843.

[7] Silva M, Morales D. La contaminacion proveniente de la industria curtiembre, una aproximacion a la realidad ecuatoriana. Revista Científica UIsrael. 2021;9(1):69–80.

[8] Sarmiento C, Sanchez J, Garcia C, Rincon Y, Benitez A, Ramirez J. Preparacion de carbon activado mediante la activacion quimica de carbon mineral. Ciencia. 2004;12:52–63.

[9] Aravindhan R, Madhan B, Rao JR, Nair BU, Ramasami T. Bioaccumulation of chromium from tannery wastewater: an approach for chrome recovery and reuse. Environmental Science & Technology. 2004 Jan;38(1):300–306.

[10] Mayta R, Mayta J. Remocion de cromo y demanda quimica de oxigeno de aguas residuales de curtiembre por electrocoagulacion. Revista de la Sociedad Quimica del Peru. 2017;83(3):331–340.

[11] Nigam H, Das M, Chauhan S, Pandey P, Swati P, et al. Effect of chromium generated by solid waste of tannery and microbial degradation of chromium to reduce its toxicity: A review. Advances in Applied Science Research Open Access. 2015;6:129–136.

[12] Flores-Ona D, Fullana A. Carbon nanoparticles production using solvent assisted hydrothermal carbonization. Diamond Related Materials. 2020;108:107960.

[13] Minas F, Chandravanshi B, Leta S. Chemical precipitation method for chromium removal and its recovery from tannery wastewater in Ethiopia. Angewandte Chemie International Edition.. 2017;3:392–405.

[14] Juan Y, Ke-Qiang Q. Preparation of activated carbon by chemical activation under vacuum. Environmental Science & Technology. 2009 May;43(9):3385–3390.

[15] Ji Y, Li T, Zhu L, Wang X, Lin Q. Preparation of activated carbons by microwave heating KOH activation. Applied Surface Science. 2007;254(2):506–512.

[16] Prakash M, Raghavendra G, Ojha S, Panchal M. Characterization of porous activated carbon prepared from arhar stalks by single step chemical activation method. Materials Today: Proceedings. 2021;39:1476–1481.

[17] Chen WC, Lin HY, Yuan CS, Hung CH. Kinetic modeling on the adsorption of vaporphase mercury chloride on activated carbon by thermogravimetric analysis. Journal of the Air & Waste Management Association. 2009 Feb;59(2):227–235.

[18] Hidayua A, Mohamada N, Matali S, Sharifah A. Characterization of activated carbon prepared from oil palm empty fruit bunch using BET and FT-IR techniques. Procedia Engineering. 2013;68:379–384.

[19] Beltran J, Veloz R, Perez M, Navarrete J, Vazquez E, et al. Chromium recovery from solid leather waste by chemical treatment and optimisation by response surface methodology. Chem- Ecol. 2012;28(1):89–102.

[20] Da Costa G, Alves J. Recycling of chromium wastes from the tanning industry to produce ceramic nanopigments. Green Chemistry journal. 2016;18(19):5342–5356.