THE EFFECT OF SALINITY TO ACTIVITY AND EFFECTIVITY PHOSPHATE SOLUBILIZING BACTERIA ON GROWTH AND PRODUCTION OF PADDY

Abstract

This study aimed to determine the extent of phosphate solubilizing bacteria resistant to salinity and still be able to provide P for paddy plant. Research using completely randomized design with fertilizer treatments:
(A) Bakteri Aerobacter aerogenes + Azotobacter indicus (B) Bakteri Bacillus thuringiensis + B. megaterium
+ Pseudomonas fluorescens, (C) Bakteri Nocardia mesentrica + Spirillum lipoferum, (D) Mix bakteri Pseudomonas fluorescens, Bacillus thuringiensis, B. megaterium, Nocardia mesentrica, Aerobacter aerogenes, Spirillum lipoferum, dan Azotobacter indicus, and (E) control (whitout inoculant), and salinity (NaCl): (1) 0% (0 grams / 7 kg soil), (2) 0.1% (7 grams / 7 kg soil), (3) 0.2% (14 g / 7 kg soil), (4) 0.3% (21 g / 7 kg soil), and (5) 0 , 4% (28 g / 7 kg soil). Thirty and one hundred days after transplanting (DAT), and then measured plant height, number of tillers, number and dry weight of whole grain paddy. The results showed that 0,1 % (7 gram/7 kg tanah) salinity is very good for the growth, activity and effectiveness of phosphate solubilizing bacteria and production of paddy, but 0.4% salinity (28 gr/7kg land) is still safe on the growth, activity and effectiveness of phosphate solubilizing bacteria (Pseudomonas fluorescens, Bacillus thuringiensis,
B. megaterium, Nocardia mesentrica, Aerobacter aerogenes, spirillum lipoferum and Azotobacter indicus) as biofertilizer or growth promoting rhizobacteria on growth and production of paddy.


Keywords: Salinity, Phosphate solubilizing bacteria, Paddy

References
Glick, B.R. 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. Vol. 4: 109-117.
Honma, M., and T. Shimomura. 1978. Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric Biol Chem. Vol. 42 : 1825–1831.
Husen, E., R.M.D. Simanungkalit, Saraswati and Irawan. 2007. Characterization and quality assessment of Indonesian commercial biofertilizers. Ind. of Agr. Sci., Vol. 8 : 31-38
Husen, E. 2011. Ameliorasei cekaman salinitas pada padi sawah dengan bakteri penghasil ACC Deaminase. Laporan akhir program insentif riset terapan. Balai penelitian tanah. Balai besar litbang sumber daya lahan pertanian badan penelittian dan pengembangan pertanian kementrian.
Kohler, J., F. Caravaca, and A. Roldan. 2010. An AM fungus and PGPR intensify the adverse effects os salinity on the stability of rhizosphere soil aggregates of Luctuca sativa. Soil Biol. & Biochem., Vol. 42: 429-434.
Kustiyaningsih. 2003. Pengaruh Sumber Karbon terhadap Aktivitas Bakteri Pelarut Fosfatdari Isolat Tanah Bukit Bangkirai, Kalimantan Timur. Skripsi. IPB. Bogor.
Pervaiz, Z., M. Afzal, Y.A. Xiaoe, and L. Ancheng. 2002. Selection criteria for salt-tolerance in wheat cultivars at seedling stage. Asian J. Plant Sci. Vol. 1: 85–87.
Water, S.A. 2007. Technical Guideline, General technical information for geotechnical design – Part K – Geotechnical SI Units System. South Australian Water Corporation.
Widawati, S. 2012. The Use Of Plant Growth Promoting Rizobacteria (Pseudomonas Fluorescens and Serratia Marcescens) for Paddy Growth in High Salinity Ecosystem. Seminar Nasional Biodiversitas IV, 15 September 2012. Universitas Erlangga, Surabaya.