

KnE Social Sciences Volume 2020

Conference Paper

An Overview of KMP. Gorare Route Tanjung Ru-Sadai Belitung, Bangka Belitung Province

Surnata¹, Rudy Sugiharto², Purboyo³, Febriyanti⁴, and Apri Sejahtera⁵

¹Lecturer of Politeknik Transportasi Sungai, Danau & Penyeberangan Palembang, E-Mail: surnata190766@gmail.com

²Deputy Director III of Politeknik Transportasi Sungai, Danau & Penyeberangan Palembang
 ³Lecturer of Politeknik Transportasi Sungai, Danau & Penyeberangan Palembang
 ⁴Lecturer of Politeknik Transportasi Sungai, Danau & Penyeberangan Palembang
 ⁵Alumni of Politeknik Transportasi Sungai, Danau & Penyeberangan Palembang

Abstract

Belitung Regency is one of the regencies in Indonesia's Bangka Belitung Province where river crossing transportation plays a vital role in transportation activities and the region's economy. The Gorare Ferry Motor Boat is a ro-ro type motor boat serving the Tanjung Ru-Sadai route. This form of transportation is expected to be able to stimulate economic growth in the region's more remote areas, and the government is therefore providing subsidies to support the programme. Based on productivity data from 2010 to 2013, there was a significant increase in passenger volumes and vehicle productivity. However, the pricing rate does not cover the operating costs of the ship. This study seeks to ascertain when the service will reach breakeven and no longer require subsidies.

Keywords: Crossing; Transportation; Role.

1. Introduction

Belitung Regency is one of the regencies in Bangka Belitung Province where ferries and carriage transportation plays a very important role in transportation activities, besides being a moving bridge that connects roads cut off by water, it is also used as a means of distributing goods and services to support the economy in Belitung Regency.

The Gorare Ferries and Cariage Motor Boat is a ro-ro type motor boat serving the Tanjung Ru-Sadai route. This early transportation is expected to be able to encourage and advance remote areas economy therefore the government is responsible for implementing it out by providing subsidy to the management of KMP. services; Gorare, namely PT. ASDP Indonesia Ferry, Bangka Belitung Branch. Based on productivity data from 2010 to 2013, the result described that is an increasing passenger and vehicle productivity. However, the rate set still cannot be covered or cannot cover the operating

Corresponding Author: Surnata surnata190766@gmail.com

Published: 12 January 2021

Publishing services provided by Knowledge E

© Surnata et al. This article is distributed under the terms of the Creative Commons

Attribution License, which

permits unrestricted use and redistribution provided that the original author and source are credited.

Selection and Peer-review under the responsibility of the IWPOSPA Conference Committee.

costs of the ship. Therefore, the authors will examine in more depth in what year the load factor and income to take the Break Even point or entry point, so that subsidy turn into commercial ships.

2. Research Methods

2.1. Passenger and Vehicle Growth Forecasting

To predict the number of users of this service, researchers used the Data Series method, it was possible to know the growth of passengers and vehicles that will come on the track. The predicted number of transports could be calculated using this following formula:

$$Y' = a + bx$$

Note:

Y '= the dependent variable (the predicted variable)

X = independent variable (day, month, year)

a and b = Kon Numbers

2.2. Ship Operational Cost Analysis

To calculate ship operational cost, the following calculation of ship operating costs is formulated based on the Decree of the Minister of Transportation Number 58 of 2003 concerning the mechanism for determining and formulating ferry transportation rates as follows:

2.2.1. Transportation Revenue Analysis

To calculate the amount of ship revenue per year, both the current prevailing tariff and the rates being studied, use the following formula:

Number of Passengers x Rates

Number of Vehicles x Rates

2.2.2. Load Factor Break Even Point

To calculate BEP load factor, two levels of ship load factors, where the position between the ship's operating costs and revenue is balanced, the formula used is as follows:

LF BEP = $\frac{BOK}{PDT}$ **x LF** Note: LF BEP = Load factor break event point

BOK = Ship operating costs

PDT = Income

LF = Ship's load factor in a year

3. Results and Discussions

3.1. Calculation of Load Factors for the coming year

The ship's load factor calculation can be determined using, the following formula.

No	Year	Trip	Used Capacity(SUP)	Available capacity (SUP)	Load Factor%
1	2014	176	3650,6	14432	25,29518
2	2015	176	3932,25	14432	27,24674
3	2016	176	4213,9	14432	29,19831
4	2017	176	4495,55	14432	31,14988
5	2018	176	4777,2	14432	33,10144
6	2019	176	5058,85	14432	35,05301
7	2020	176	5340,5	14432	37,00457
8	2021	176	5622,15	14432	38,95614
9	2022	176	5903,8	14432	40,90771
10	2023	176	6185,45	14432	42,85927
11	2024	176	6467,1	14432	44,81084
12	2025	176	6748,75	14432	46,7624
13	2026	176	7030,4	14432	48,71397
14	2027	176	7312,05	14432	50,66553
15	2028	176	7593,7	14432	52,6171

TABLE 1: Passenger Load Factor Forecasting

Source: Data Processed, 2020

No	Year	Trip	Used Capacity (SUP)	Availabe (SUP)	Load Factor %
1	2014	176	33071,0855	49174,4	67,2526467
2	2015	176	35405,5665	49174,4	71,99999695
3	2016	176	37740,0475	49174,4	76,7473472
4	2017	176	40074,5285	49174,4	81,49469744
5	2018	176	42409,0095	49174,4	86,24204769
6	2019	176	44753,9565	49174,4	91,01068137
7	2020	176	47077,9715	49174,4	95,73674819
8	2021	176	49412,4525	49174,4	100,4840984
9	2022	176	51746,9335	49174,4	105,2314487
10	2023	176	54081,4145	49174,4	109,9787989
11	2024	176	56415,8955	49174,4	114,7261492
12	2025	176	58415,8955	49174,4	118,7933061
13	2026	176	61084,8575	49174,4	124,2208497
14	2027	176	63419,3385	49174,4	128,9681999
15	2028	176	65753,8195	49174,4	133,7155502

TABLE 2: Ship Load Factor Forecasting

Source: Data Processed, 2020

TABLE 3: Ship Load Factor Forecasting

Tahun	Trip	Used C	Used Capacity Available Capacit			Load Factor
		Pnp	Kend	Pnp	Kend	Ship %
2014	176	2219,75	33071,0855	14431	49174,4	55,48
2015	176	2343	35405,5665	14431	49174,4	59,34
2016	176	2465,95	37740,0475	14431	49174,4	63,21
2017	176	2588,9	40074,5285	14431	49174,4	67,07
2018	176	2711,85	42409,0095	14431	49174,4	70,94
2019	176	2834,8	44753,9565	14431	49174,4	74,82
2020	176	2957,75	47077,9715	14431	49174,4	78,67
2021	176	3080,7	49412,4525	14431	49174,4	82,53
2022	176	3203,65	51746,9335	14431	49174,4	86,40
2023	176	3326,6	54081,4145	14431	49174,4	90,25
2024	176	3449,55	56415,8955	14431	49174,4	94,12
2025	176	3572,5	58415,8955	14431	49174,4	97,46
2026	176	3695,45	61084,8575	14431	49174,4	101,71
2027	176	3818,4	63419,3385	14431	49174,4	105,71
2028	176	3941,35	65753,8195	14431	49174,4	104,46

Source: Data Processed, 2020

3.2. Ship Operational Cost Analysis (BOK)

Ship operating costs (BOK) for 2014 based on the author's analysis on the basis of calculations adjusted to the Decree of the Minister of Transportation Number 58 of 2003 concerning the Mechanism of Determination and Formulation of Ferry Transportation Rates, it was obtained Ship Operational Costs of **IDR. 4,599,037,984, -**

The following is the calculation of KMP. Ship Operational Costs (BOK). Gorare:

- 1. Direct cost
 - (a) Fixed Costs

Total Fixed Costs Per Year = IDR. 1,581,689,000, -

(b) Variable Costs

Total Variable Costs Per Year = IDR. 2,444,783,743, -

Total variable Costs = IDR. 4,026,472,743,-per year

- 2. Indirect Costs
 - (a) Fixed Costs

Total Fixed Costs Per Year = IDR. 88,885,900, -

Variable costs per year = IDR. 43,067,000, -

(b) Total Indirect Cost Per Year = IDR. 131,952,900,-per year

Total KMP. Operational Costs. Gorare per year that passes through Tanjung Ru-Sadai, namely:

Total Direct Costs + Total Indirect Costs

- = IDR. 4,026,472,743+ IDR. 131,952,900
- = IDR. 4,158,425,643, -

3.3. Calculation of Future Ship Revenue

In relation the increase in passenger and vehicle productivity from year to year, operator revenues will also increase. To find out the income of KMP. operators. Gorare can use formula II.2, where the transport productivity predicted for 2014-2028 is multiplied by the assumption that the tariff is fixed. The results of the calculation of KMP. operator income. Gorare from 2014-2028 can be seen as follows:

ference (Rp)		821.047.193	554.959.593	488.871.993	322.784.393	156.696.793	89.987.393	\$24.521.593	58.433.993	92.346.393	26.258.793	160.171.193	5.916.407)	72.004.007)	(38.091.607)	(04.179.207)
BOK (Rp) Di		1.158.425.643 -1	.158.425.643 -1.	.158.425.643 -1.	.158.425.643 -1.	.158.425.643 -1.	.158.425.643 -9	.158.425.643 -8	.158.425.643 -6	.158.425.643 -4	.158.425.643 -3	.158.425.643	.158.425.643	.158.425.643 (1	.158.425.643 (3	1.158.425.643 (5
Income (Rp)		2.337.378.450 4	2.503.466.050 4	2.669.553.650 4	2.835.641.250 4	3.001.728.850 4	3.168.438.250 4	3.333.904.050 4	3.499.991.650 4	3.666.079.250 4	3.832.166.850 4	3.998.254.450 4	4.164.342.050 4	4.330.429.650 4	4.496.517.250 4	4.662.604.850 4
	Group VIII	9,05	10	10,95	11,9	12,85	13,8	14,75	15,7	16,65	17,6	18,55	19,5	20,45	21,4	22,35
	Group VII	46,05	52,5	58,95	65,4	71,85	78,3	84,75	91,2	97,65	104,1	110,55	117	123,45	129,9	136,35
	Group VI B	31,05	35,5	39,95	44,4	48,85	53,5	57,75	62,2	66,65	71,1	75,55	80	84,45	88,9	93,35
dno	Group V B	585,85	620	654,15	688,3	722,45	756,6	790,75	824,9	859,05	893,2	927,35	961,5	995,65	1029,8	1063,95
les by Gro	Group V	6,8	6,5	6,2	5,9	5,6	5,3	വ	4,7	4,4	4,1	3,8	3,5	3,2	2,9	2,6
Vehic	GroupIV B	320,25	338,5	356,75	375	393,25	411,5	429,75	448	466,25	484,5	502,75	521	539,25	557,5	575,75
	Group IV A	55,85	61,05	66,25	71,45	76,65	81,85	87,05	92,25	97,45	102,65	107,85	113,05	118,25	123,45	128,65
	Group II	645,4	672,5	699,6	726,7	753,8	780,9	808	835,1	862,2	889,3	916,4	943,5	970,6	997,7	1024,8
	Group I	0,5	0	-0,5	<u>-</u>	-1,5	, 2	-2,5	'n	-3,5	4	4,5	'n	-5,5	9-	-6,5
nger	Child	24,7	24,25	23,8	23,35	22,9	22,45	22	21,55	21,1	20,65	20,2	19,75	19,3	18,85	18,4
Passe	Adult	3625,9	3908	4190,1	4472,2	4754,3	5036,4	5318,5	5600,6	5882,7	6164,8	6446,9	6729	7011,1	7293,2	7575,3
Year		2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028

TABLE 4: Incoming Forecasting Table in 2014-2028

3.4. Source: Data Processed, 2020Load Factor Break Even Point

To get the load factor break event point each year, it can be calculated based on the formula II.3, where the ship operating costs (BOK) forecast per year divided by the income per year multiplied by the ship load factor per year. The results of calculations from 2010 to 2028 can be seen in the table below:

Year	Income (Rp)	BOK (Rp)	Difference (Rp)	LF Vessel (%)	LF BEP (%)
2014	2.337.378.450	4.158.425.643	-1.821.047.193	55,48	98,70
2015	2.503.466.050	4.158.425.643	-1.654.959.593	59,34	98,57
2016	2.669.553.650	4.158.425.643	-1.488.871.993	63,21	98,46
2017	2.835.641.250	4.158.425.643	-1.322.784.393	67,07	98,36
2018	3.001.728.850	4.158.425.643	-1.156.696.793	45,49	63,02
2019	3.168.438.250	4.158.425.643	-989.987.393	47,10	61,82
2020	3.333.904.050	4.158.425.643	-824.521.593	48,70	60,74
2021	3.499.991.650	4.158.425.643	-658.433.993	50,30	59,76
2022	3.666.079.250	4.158.425.643	-492.346.393	51,90	58,87
2023	3.832.166.850	4.158.425.643	-326.258.793	53,22	57,75
2024	3.998.254.450	4.158.425.643	-160.171.193	94,12	97,89
2025	4.164.342.050	4.158.425.643	(5.916.407)	97,46	97,32
2026	4.330.429.650	4.158.425.643	(172.004.007)	101,71	97,67
2027	4.496.517.250	4.158.425.643	(338.091.607)	105,71	97,76
2028	4.662.604.850	4.158.425.643	(504.179.207)	104,46	93,16

 TABLE 5: Forecasting Future Ship BEP Load Factors

Source: Data Processed, 2020

The following is a graph of the balance between revenue and ship operating costs:

3.5. Resolution

Based on the problem analysis in 2014, it was found that the operational conditions of the KMP. Gorare across Tanjung Ru-Sadai still suffered losses. This can be seen from:

- (a) Current Ship Load Factor is 55.48% smaller than the Break Event Point (BEP)
 Load Factor, which is 98.70%
- (b) The current ship revenue is IDR. 2,337,378,450, -

One solution to the problem so that ships continue to operate is the provision of subsidies to continue, until 2024 and 2025 there is no need to receive subsidies because they have reached BEP.

- (a) Ship Load Factor in 2025 is 97.46% greater than the Break Event Point (BEP)
 Load Factor, which is 97.32%
- 3. Ship revenue in 2025 is IDR. 4,330,429,650,- greater than the operational cost of the ship, which is IDR. 4,158,425,643, -

4. Conclusion

Based on the results of data analysis and discussion, the following conclusions can be drawn that operation of KMP. Gorare is currently still eligible for assistance in the form of subsidies from the government and is still categorized as a pioneer crossing. And based on the analysis data, the current ship load factor **is 55.48%** smaller than the Break Event Point (BEP) load factor, which is **98.70%** with operating costs of ships operating at **IDR. 4,158,425,643**,-and transportation income of IDR. **2,337,378,450,-**so that in the KMP. operation. Gorare still suffered losses of and still need assistance from the government in the form of subsidies. Also the prediction data of ship load factor in 2025, which is **97.46%** greater than the load factor break even point (BEP), which is **97.32%** with an income of **IDR. 4,164,342,050,-**greater than the ship's operating costs of **IDR. 4,158,425,643** so it is estimated that by 2026 the crossing of the Tanjung Ru-Sadai route will have become a commercial route and no need for government assistance in the form of subsidies anymore.

References

[1] Salim, Drs. Abbas. (2013). Transportation Management. Jakarta : Rajawali Pers

- [2] Nasution, Drs. Muhammad Nur. (2008). Load Factor is the Number of Passengers and Vehicles Carried by the Ship Compared to the Capacity Provided. Jakarta: Ghalia Indonesia
- [3] Riyanto, Bambang. (2001). Basics of Corporate Spending. Yogyakarta: BPFE
- [4] Decree of the Minister of Transportation Number 58 of 2003 concerning the Mechanism of Determining and Formulating the Calculation of Ferry Transport Rates.
- [5] Regulation of the Governor of Bangka Belitung Islands Number 34 of 2013 concerning Ferry Transportation Rates for Economy Class Passengers, Vehicles, Goods and Animals at the Tanjung Ru-Sadai Crossing Crossing in Belitung Regency, Bangka Belitung Province.
- [6] Regulation of the Minister of Transportation Number 26 of 2012 concerning the Implementation of Cross Transportation.