Factors Influencing Customers Acceptance of Using the QR Code Feature in Offline Merchants for Generation Z in Bandung (Extended UTAUT2)


Mobile payment services is happening in Indonesia are shifting to support the cashless society future supported by the many tech-savvy consumers in Indonesia. The leading mobile payment players, namely Go-Pay, OVO, DANA, LinkAja, etc. began to expand their target market network by adding the QR Code feature to perform transactions in offline merchants. With the offering transactions of cashbacks, the consumer will more likely to adopt the QR Code because the promotion can only be obtained by making offline transactions at several affiliated merchants. The purpose of this study is to identify the factors that can influence the behavioral intention and the actual usage for using the QR Code feature in mobile payment to perform transactions in offline merchants. This study will also identify the extent to which the actual usage of the QR Code feature can contribute to the National Non-Cash Movement (GNNT), starting from the scope of generation Z in Bandung. This study will be conducted by using Extended UTAUT2 with nine independent variables of Performance Expectancy (PE), Effort Expectancy (EE), Social Influence (SI), Facilitating Conditions (FC), Hedonic Motivation (HM), Price Value (PV), Habit (HT), Trust (T), and Perceived Risk (PR). These variables will be tested to the Behavioral Intention (BI) and also Actual Use (AU). The result indicates that the Habit is the most significant factors to influence Behavioral Intention. While the others, namely Behavioral Intention, Facilitating Conditions, Hedonic Motivation, and Performance Expectancy influence to Actual Usage and Behavioral Intention.

Keywords: Mobile Payment, QR Code in Offline Merchants, Generation Z, Extended UTAUT2

[1] Agusta, J. & Hutabarat, K., 2018. Mobile Payments in Indonesia: Race To Big Data Domination, s.l.: Metra Digital Innovation (MDI);Mandiri Sekuritas.

[2] Alalwan, A. A., Dwivedi, Y. K. & Rana, N. P., 2017. Factors influencing the adoption of mobile banking by Jordanian bank customers: Extending UTAUT2 with trust. International Journal of Information Management, pp. 99-110.

[3] Alalwan, A. A., Dwivedi, Y. K., Rana, N. P. & Algharabat, R., 2018. Examining factors influencing Jordanian customers’ intentions and adoption of internet banking: Extending UTAUT2 with risk. Journal of Retailing and Consumer Services, pp. 125-138.

[4] Asosiasi Penyelenggara Jasa Internet Indonesia, 2017. Penetrasi & Perilaku Pengguna Internet Indonesia 2017, s.l.: Teknopreneur.

[5] Badan Pusat Statistik Provinsi Jawa Barat, 2017. Proyeksi Penduduk Menurut Kelompok Umur dan Jenis Kelamin di Kota Bandung, 2017. [Online] Available at: https://bandungkota.bps.go.id/statictable/2019/01/ 04/179/proyeksi-penduduk-menurut-kelompok-umur-dan-jenis-kelamin-di-kota-bandung-2017.html [Accessed 26 March 2019].

[6] Bagozzi, R. P. & Yi, Y., 1988. On the Evaluation of Structural Equation Models. Journal of the Academy of Marketing Science, 16(1), pp. 74-94.

[7] Bank Indonesia, 2014. Elektronifikasi dan Keuangan Inklusif. [Online] Available at: https: //www.bi.go.id/id/edukasi-perlindungan-konsumen/edukasi/produk-dan-jasa sp/elektronifikasi- dan-ki/Pages/default.aspx[Accessed 26 March 2019].

[8] Bank Indonesia, 2014. Press Releases - Bank Indonesia Launches National Non-Cash Movement. [Online] Available at: https://www.bi.go.id/en/ruang-media/siaran-pers/Pages/sp_165814. aspx[Accessed 26 March 2019].

[9] Baptista, G. & Oliveira, T., 2015. Understanding mobile banking: The unified theory of acceptance and use of technology combined with cultural moderators. Computers in Human Behavior, Volume 50, pp. 418-430.

[10] Bayero, M. A., 2015. Effect of Cashless Economy Policy on financial inclusion in Nigeria: An exploratory study. Procedia - Social and Behavioral Sciences, Volume 172, pp. 49-56.

[11] Brown, S. A. & Venkatesh, V., 2005. Model of Adoption of Technology in Households: A Baseline Model Test and Extension Incorporating Household Life Cycle. MIS Quarterly, pp. 399-426.

[12] Business Insider US, 2018. One photo shows that China is already in a cashless future. [Online] Avail- able at: https://www.businessinsider.sg/alipay-wechat-pay-china-mobile-payments-street-vendors- musicians-2018-5/?r=US&IR=T[Accessed 26 March 2019].

[13] Crowe, M., Rysman, M. & Stavin, J., 2010. Mobile Payments in the United States at Retail Point of Sale: Current Market and Future Prospects, s.l.: s.n.

[14] DailySocial, 2018. Fintech Report 2018, s.l.: Otoritas Jasa Keuangan; JAKPAT.

[15] Deloitte, 2018. Bolstering financial inclusion in Indonesia, s.l.: PT Deloitte Consulting.

[16] Dewan, S. G. & Chen, L.-d., 2005. Mobile Payment Adoption in the US: A Cross-industry, Crossplatform Solution. Journal of Information Privacy and Security, 1(2), pp. 4-28.

[17] Fornell, C. & Larcker, D. F., 1981. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), pp. 39-50.

[18] Francisco Liébana-Cabanillas, I. R. d. L. & Montoro-Ríos, F., 2017. Intention to use new mobile payment systems: a comparative analysis of SMS and NFC payments. Economic Research-Ekonomska Istraživanja, 30(1), pp. 892-910.

[19] Gefen, D., Karahanna, E. & Straub, D. W., 2003. Trust and TAM in Online Shopping: An Integrated Model. MIS Quarterly, pp. 51-90.

[20] Hair, J. F., Black, W. C., Babin, B. J. & Anderson, R. E., 2014. Multivariate Data Analysis. s.l.:Pearson Education Limited.

[21] Hair, J. F., Hult, G. T. M., Ringle, C. M. & Sarstedt, M., 2017. A PRIMER ON PARTIAL LEAST SQUARES STRUCTURAL EQUATION MODELING (PLS-SEM). 2nd ed. s.l.:SAGE Publications, Inc.

[22] Hulland, J., 1999. Use of Partial Least Squares (PLS) in Strategic Management Research: A Review of Four Recent Studies. Strategic Management Journal, 20(2), pp. 195-204.

[23] Investopedia, 2018. Mobile Payment. [Online] Available at: https://www.investopedia.com/terms/m/ mobile-payment.asp[Accessed 1 April 2019].

[24] Jain, V., Vatsa, R. & Jagani, K., 2014. Exploring Generation Z’s Purchase Behavior towards Luxury Apparel: a Conceptual Framework. Romanian Journal of Marketing, Issue 2, pp. 18-29.

[25] Tkos, S. & Fokus, F., 2004. Mobile Payment: A Journey Through Existing Procedures and Standardization Initiatives. IEEE Communications Surveys & Tutorials, 6(4), pp. 44-66.

[26] Khan, I. U., Hameed, Z. & Khan, S. U., 2017. Understanding Online Banking Adoption in a Developing Country: UTAUT2 with Cultural Moderators. Journal of Global Information Management, pp. 43-65.

[27] Kim, G., Shin, B. & Lee, H. G., 2009. Understanding dynamics between initial trust and usage intentions of mobile banking. Info Systems J, pp. 283-311.

[28] KPMG Siddharta Advisory, 2017. Retail payments in Indonesia, s.l.: KPMG Indonesia.

[29] KumparanTECH, 2018. Go-Pay Beri Promo Pay Day di 2.000 Restoran dan Toko, Ada Cashback 50%. [Online] Available at: https://kumparan.com/@kumparantech/go-pay-beri-promo-pay-day-di-2- 000-restoran-dan-toko-ada-cashback-50-1543229299384995023 [Accessed 26 March 2019].

[30] Liébana-Cabanillas, F., Sánchez-Fernández, J. & Muñoz-Leiva, F., 2014. Antecedents of the adoption of the new mobile payment systems: The moderating effect of age. Computers in Human Behavior, Issue 35, pp. 464-478.

[31] Limantara, N., Jingga, F. & Surja, S., 2018. Factors Infuencing Mobile Payment Adoption in Indonesia. International Conference on Information Management and Technology (ICIMTech), pp. 373-377.

[32] Limayem, M., Hirt, S. G. & Cheung, C. M. K., 2007. How Habit Limits the Predictive Power of Intention: The Case of Information Systems Continuance. MIS Quarterly, pp. 705-737.

[33] Linnes, C. & Metcalf, B., 2017. iGeneration And Their Acceptance of Technology. pp. 11-26. [34] 5

[35] Megadewandanu, S., Suyoto & Pranowo, 2016. Exploring Mobile Wallet Adoption in Indonesia Using UTAUT2: An Approach from Consumer Perspective. International Conference on Science and Technology-Computer (ICST).

[36] Oliveira, T., Thomas, M., Baptista, G. & Campos, F., 2016. Mobile payment: Understanding the determinants of customer adoption and intention to recommend technology. Computers in Human Behavior, pp. 404-414.

[37] Pathirana, P. A. & Azam, S. F., 2017. Factors Influencing the Use of Mobile Payments – A Conceptual Model. National Information Technology Conference.

[38] Riquelme, H. E. & Rios, R. E., 2010. The moderating effect of gender in the adoption of mobile banking. International Journal of Bank Marketing, pp. 328-341.

[39] Slade, E. L., Williams, M. D. & Dwivedi, Y. K., 2014. Devising a research model to examine adoption of mobile payments: An extension of UTAUT2. The Marketing Review, pp. 311-336.

[40] Slade, E., Williams, M. & Dwivdei, Y., 2013. Extending UTAUT2 To Explore Consumer Adoption of Mobile Payments. UK Academy for Information Systems Conference Proceedings.

[41] Thomas, H., Jain, A. & Angus, M., 2013. Measuring progress toward a cashless society, s.l.: MasterCard Advisors.

[42] Tirto, 2017. Evolusi Gojek Sebagai Fintech Lewat Go-Pay. [Online] Available at: https://tirto.id/evolusi- gojek-sebagai-fintech-lewat-go-pay-cAvw [Accessed 26 March 2019].

[43] Venkatesh, V., Morris, M. G., Davis, G. B. & Davis, F. D., 2003. User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), pp. 425-478.

[44] Venkatesh, V., Thong, J. Y. L. & Xu, X., 2012. Consumer Acceptance and Use of Information Technology: Extending The UNified Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1), pp. 157-178.

[45] Visa, 2017. Rise Of The Digitally Engaged Consumer, Southeast Asia: Visa.

[46] Visa, 2019. The Road Ahead Consumer Payment Trends in Southeast Asia, Southeast Asia: Visa.

[47] Vision Critical, 2016. The Everything Guide to Generation Z, s.l.: s.n.

[48] Wong, K. K.-K., 2013. Partial Least Squares Structural Equation Modeling (PLS-SEM) Techniques Using SmartPLS. Marketing Bulletin, Volume 24, pp. 1-32.

[49] Wood, S., 2013. Generation Z as Consumers: Trends and Innovation. Institute for Emerging Issues.

[50] Yang, S., 2013. Understanding Undergraduate Students’ Adoption of Mobile Learning Model: A Perspective of the Extended UTAUT2. Journal of Convergence Information Technology ( JCIT), pp. 969-979.

[51] Yuan, S. & Kanthawala, S., 2015. Keep Using My Health Apps: Discover Users’ Perception of Health and Fitness Apps with the UTAUT2 Model. Telemedicine and e-Health, pp. 735-741.