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Abstract
Based on the Cournot oligopoly game and the nonlinear dynamics theory, we study
the behavior of semi-public enterprises by considering corporate social responsibility
into their objectives. The model that is established is a dynamical Cournot-type
duopoly model with bounded rationality containing the consumer surplus. We suppose
quadratic cost function and a convex, log-linear demand function. The game is modeled
with a system of two difference equations. Existence and stability of equilibriums of this
system are studied. More complex chaotic and unpredictable trajectories are resulted
studying this discrete dynamical system. The complex dynamics of the system are
demonstrated numerically via computing Lyapunov numbers, sensitivity dependence
on initial conditions, and bifurcation diagrams.

Keywords: Cournot duopoly game; Discrete dynamical system; Homogeneous
expectations; Stability; Chaotic Behavior; Consumer Surplus.

1. Introduction

Oligopoly is a market structure betweenmonopoly and perfect competition, where there
are only a small number of firms that produce homogeneous products. The dynamic of
an oligopoly game is more complex because firms must consider not only the behaviors
of the consumers, but also the reactions of the competitors i.e. they form expectations
concerning how their rivals will act at every next time period. Augustin Cournot, in
1838 introduced the first formal theory of oligopoly. He treated the case with naive
expectations. In this case, at every step each player (firm) assumes the last values that
were taken by the competitors without estimation of their future reactions.

Expectations play an important role in modelling economic phenomena. A producer
can choose his expectations rules of many available techniques to adjust his production
outputs trying to maximize his utility (profit) functions. In this paper the dynamics of a
duopoly model where each firm behaves with heterogeneous expectations strategies
are studied. Also, a duopoly model where each player forms a strategy in order to
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compute his expected output is considered. Each player adjusts his outputs towards
the profit maximizing amount as target by using his expectations rule. Some authors
considered duopolies with homogeneous expectations and found a variety of complex
dynamics in their games, such as appearance of strange attractors (Agiza [1], Agiza et
al. [4], Agliari et al., [5],[6], Bischi, Kopel [10], Kopel [20], Puu [25], Sarafopoulos,[27]).
Also models with heterogeneous agents were studied (Agiza, Elsadany [2], [3], Agiza et

al. [4], Den Haan [14], Fanti, Gori [17], Tramontana [29], Zhang [32]).

In the real market producers do not know the entire demand function, though it is
possible that they have a perfect knowledge of technology, represented by the cost
function. Hence, it is more likely that firms employ some local estimate of the demand.
This issue has been previously analyzed by Baumol and Quandt [9], Puu [24], Naimzada
and Ricchiuti [22], Askar [7], Askar [8]. Efforts have been made to model bounded
rationality to different economic areas: oligopoly games (Agiza, Elsadany [3], Bischi et
al [12], Zhang et al. [32]); financial markets (Hommes [19]); macroeconomic model such
as multiplier-accelerator framework (Westerhoff [30]). In particular, difference equations
have been employed extensively to represent these economic phenomenona (Elaydi
[15], Sedaghat [28]). Bounded rational players (firms) update their production strategies
based on discrete time periods and by using a local estimate of the marginal profit. With
such a local adjustment mechanism, the players are not requested to have a complete
knowledge of the demand and the cost functions (Agiza, Elsadany [2], Naimzada,
Sbragia [23], Zhang et al [31], Askar [8]). All they need to know is if the market responses
to small production changes by an estimate of the marginal profit.

All of the above discussions are mainly based on private enterprises, which pursuit
the maximization of their own profits. However, there are many firms with different
ownership structures. A publicly-owned firm tends to maximize the social welfare, a
partially publicly-owned firms tend to maximize the weighted average of the social
welfare and its own profit. (Elsadany, Awad [16]).

The present study is a partial theoretical approach to our main ongoing research
objective, which is to quantify and study an oligopoly of the Greek market and extends
Askar [8] and Sarafopoulos [27]. We investigate the dynamics of a nonlinear discrete-
time duopoly game, where the players are bounded rational and they have homo-
geneous expectations. We assume that the two bounded rational players not only
pursue profit maximization but also take consumer surplus into account, so the utilities
of both players are the combination of their profits and the consumer surplus. Existence
and stability of equilibrium of this system are studied. We show that the model gives
more complex chaotic and unpredictable trajectories as a consequence of change in
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the speed of adjustment of the players and the new parameter 𝜇 that is imported in
players' utilities which reveals the percentage of the consumer surplus they take into
account. Moreover, from a mathematical point of view, we show that the destabilization
of the fixed point can occur through a flip bifurcation and also that a cascade of flip
bifurcations may lead to periodic cycles and deterministic chaos.

The paper is organized as follows: In Section 2, the construction of the duopoly
game is made using log-linear demand and quadratic cost function. The utilities of
two players are exported including a percentage of the consumer surplus and the
discrete dynamical system of this game is constructed. The dynamics of this game
with homogeneous expectations is analyzed. The existence and local stability of the
equilibrium points are analyzed. In Section 3 numerical simulations are used to show
complex dynamics via computing Lyapunov numbers, and sensitive dependence on
initial conditions.

2. The Game

2.1. The construction of the game

In oligopoly game players can choose simple extension rules such as naïve or compli-
cated as adaptive expectations and bounded rationality. The players can use the same
strategy (homogeneous expectations) or can use different strategy (heterogeneous
expectations). In this study we consider homogeneous players such that each player
thinks with the same strategy to maximize his output (bounded rational player). Let
us consider a market where two firms produce homogeneous commodities. Production
decisions are taken at discrete time periods (t = 0, 1, 2, …) We consider a simple Cournot-
type duopoly market where firms (players) produce the same good and offer them at
discrete-time periods on a common market. At each period t, every firm must form
an expectation of the rival's output in the next time period in order to determine the
corresponding profit-maximization quantities for period t+1. The different technique in
this study is that both players' utility function contains a percentage of the consumer
surplus. We suppose that 𝑞1, 𝑞2are the production quantities of each firm, then the
inverse demand function (as a function of quantities) is given by the following equation:

𝑝 = 𝛼 − 𝑏 ⋅ ln (𝑞1 + 𝑞2) (1)
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where 𝑝 is the price of their product and 𝛼 is a positive parameter which expresses
the market size. So, for the two players it means that the direct demand function is
exponential:

𝑄 = 𝑞1 + 𝑞2 = 𝑒 𝛼−𝑝
𝑏 (2)

Thus it is convex and log-linear in the price. A function is log-linear if and only if
its logarithm is linear. The marketing interpretation of log-linearity is that the rate of
growth of the quantity is constant. We suppose that the cost functions of the players
are quadratic:

𝐶1 (𝑞1) = 𝑐 ⋅ 𝑞21 and 𝐶2 (𝑞2) = 𝑐 ⋅ 𝑞22 , where 𝑐 > 0 (3)

With these assumptions the profits of the firms are given by the following equations:

𝜋1 (𝑞1, 𝑞2) = 𝑝1 ⋅ 𝑞1 − 𝐶1 (𝑞1) = [𝛼 − 𝑏 ⋅ ln (𝑞1 + 𝑞2)] ⋅ 𝑞1 − 𝑐 ⋅ 𝑞21 (4)

and

𝜋2 (𝑞1, 𝑞2) = 𝑝2 ⋅ 𝑞2 − 𝐶2 (𝑞2) = [𝛼 − 𝑏 ⋅ ln (𝑞1 + 𝑞2)] ⋅ 𝑞2 − 𝑐 ⋅ 𝑞22 (5)

Then, their marginal profits at the point of the strategy space are given by:

𝜕𝜋1
𝜕𝑞1

= 𝛼 − 𝑏 ⋅ ln (𝑞1 + 𝑞2) − (2𝑐 +
𝑏

𝑞1 + 𝑞2)
⋅ 𝑞1 (6)

and

𝜕𝜋2
𝜕𝑞2

= 𝛼 − 𝑏 ⋅ ln (𝑞1 + 𝑞2) − (2𝑐 +
𝑏

𝑞1 + 𝑞2)
⋅ 𝑞2 (7)

As it is noticed above the players of this game not only pursue their own profits but also
take corporate social responsibility into account. Some empirical studies have shown
how introducing corporate social responsibility affects firm's performance, where we
interpret the corporate social responsibility as either consumer surplus CS or social
welfare SW. In this game we take account of the CS. Now, the CS can be written as:

𝐶𝑆 = ∫
+∞

𝑝
𝑒 𝛼−𝑝

𝑏 𝑑𝑝 = lim
𝑛→∞(∫

𝑛

𝑝
𝑒 𝛼−𝑝

𝑏 𝑑𝑝) = 𝑏 ⋅ (𝑞1 + 𝑞2) (8)
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As it is said above, each player cares about the maximization of a utility function
that contains his profit function and a percentage of the consumer surplus. This utility
function 𝑈 is described by the following equation:

𝑈𝑖 (𝑞𝑖, 𝑞𝑗) = (1 − 𝜇) ⋅ 𝜋𝑖 + 𝜇 ⋅ 𝐶𝑆 (9)

where 𝜇 ∈ [0, 1] is the percentage of the CS is taken into account by the player i. So,
for the players of this game it means that:

𝑈1 (𝑞1, 𝑞2) = (1 − 𝜇) ⋅ 𝜋1 + 𝜇 ⋅ 𝐶𝑆

and

𝑈2 (𝑞1, 𝑞2) = (1 − 𝜇) ⋅ 𝜋2 + 𝜇 ⋅ 𝐶𝑆

Also, the marginal utilities are given by the following equations:

𝜕𝑈1
𝜕𝑞1

= (1 − 𝜇) ⋅ 𝜕𝜋1𝜕𝑞1
+ 𝜇 ⋅ 𝜕𝐶𝑆𝜕𝑞1

⇔

𝜕𝑈1
𝜕𝑞1

= (1 − 𝜇) ⋅ [𝛼 − 𝑏 ⋅ ln (𝑞1 + 𝑞2) − (2𝑐 +
𝑏

𝑞1 + 𝑞2)
⋅ 𝑞1] + 𝜇 ⋅ 𝑏 (10)

And

𝜕𝑈2
𝜕𝑞2

= (1 − 𝜇) ⋅ 𝜕𝜋2𝜕𝑞2
+ 𝜇 ⋅ 𝜕𝐶𝑆𝜕𝑞2

⇔

𝜕𝑈2
𝜕𝑞2

= (1 − 𝜇) ⋅ [𝛼 − 𝑏 ⋅ ln (𝑞1 + 𝑞2) − (2𝑐 +
𝑏

𝑞1 + 𝑞2)
⋅ 𝑞2] + 𝜇 ⋅ 𝑏 (11)

Both players follow the same strategy to decide their production quantities (homoge-
neous players) and they are characterized as bounded rational players. According to
the existing literature it means that they decide their productions following a mechanism
that is described by the equation:

𝑞𝑖 (𝑡 + 1) − 𝑞𝑖 (𝑡)
𝑞𝑖 (𝑡)

= 𝑘 ⋅ 𝜕𝑈𝑖
𝜕𝑞𝑖

, 𝑖 = 1, 2 (12)
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Through this mechanism each player increases his level of adaptation when his marginal
utility is positive or decreases his level when his marginal utility is negative, where k is
the speed of adjustment of two players, it is a positive parameter (k > 0), which gives
the extend variation production of the firm i following a given utility signal.

The dynamical system of the players is described by:

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝑞1 (𝑡 + 1) = 𝑞1 (𝑡) + 𝑘 ⋅ 𝑞1 (𝑡) ⋅
𝜕𝑈1
𝜕𝑞1

𝑞2 (𝑡 + 1) = 𝑞2 (𝑡) + 𝑘 ⋅ 𝑞2 (𝑡) ⋅
𝜕𝑈2
𝜕𝑞2

(13)

We investigate the effect of the parameter k (speed of adjustment) and the parameter
𝜇 on the dynamics of this system.

2.2. Dynamical analysis

2.2.1. The equilibriums of the game

The equilibrium positions are the nonnegative solutions of the algebraic system:

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝑞∗1 ⋅
𝜕𝑈1
𝜕𝑞1

= 0

𝑞∗2 ⋅
𝜕𝑈2
𝜕𝑞2

= 0

(14)

which obtained by setting: 𝑞1 (𝑡 + 1) = 𝑞1 (𝑡) = 𝑞∗1 and 𝑞2 (𝑡 + 1) = 𝑞2 (𝑡) = 𝑞∗2 in the
dynamical system of Eq(13).

• If 𝑞∗1 = 𝑞∗2 = 0 , then the equilibrium position 𝐸0 = (0, 0) is rejected because
𝑞1 + 𝑞2 > 0.
• If 𝑞∗1 = 0 and 𝜕𝑈2

𝜕𝑞2
= 0 , then:

𝑏 ⋅ ln𝑞∗2 + 2𝑐𝑞∗2 + 𝑏 − 𝛼 − 𝜇𝑏
1 − 𝜇 = 0 (15)

We consider the function:

ℎ (𝑥) = 𝑏 ⋅ ln𝑥 + 2𝑐𝑥 + 𝑏 − 𝛼 − 𝜇𝑏
1 − 𝜇 (16)
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with 𝐷ℎ = (0, +∞) and ℎ′ (𝑥) = 𝑏
𝑥 + 2𝑐 > 0, so the function ℎ (𝑥) ↗ for 𝑥 > 0 (monotonic

function). Also, 0 ∈ ℎ (𝐷ℎ)=ℝ and because h is a monotonic function, it means that
there is a unique root 𝑥∗ of ℎ (𝑥) = 0 and the equilibrium position is 𝐸1 = (0, 𝑦1), where
𝑦1 is the unique positive solution of Eq.(15).

• If 𝑞∗2 = 0 and 𝜕𝑈1
𝜕𝑞1

= 0 , then:

𝑏 ⋅ ln𝑞∗1 + 2𝑐𝑞∗1 + 𝑏 − 𝛼 − 𝜇𝑏
1 − 𝜇 = 0 (17)

and the equilibrium position is the 𝐸2 = (𝑥2, 0), where using the function h again the
𝑥2 is the unique positive solution of Eq.(17).

• If 𝜕𝑈1
𝜕𝑞1

= 𝜕𝑈2
𝜕𝑞2

= 0 , it gives the system:

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(1 − 𝜇) ⋅ [𝛼 − 𝑏 ⋅ ln (𝑞∗1 + 𝑞∗2) − (2𝑐 +
𝑏

𝑞∗1 + 𝑞∗2)
⋅ 𝑞∗1] + 𝜇 ⋅ 𝑏 = 0

(1 − 𝜇) ⋅ [𝛼 − 𝑏 ⋅ ln (𝑞∗1 + 𝑞∗2) − (2𝑐 +
𝑏

𝑞∗1 + 𝑞∗2)
⋅ 𝑞∗2] + 𝜇 ⋅ 𝑏 = 0

(18)

and also:

𝛼 − 𝑏 ⋅ ln (𝑞∗1 + 𝑞∗2) − (2𝑐 +
𝑏

𝑞∗1 + 𝑞∗2)
⋅ 𝑞∗1 =

𝛼 − 𝑏 ⋅ ln (𝑞∗1 + 𝑞∗2) − (2𝑐 +
𝑏

𝑞∗1 + 𝑞∗2)
⋅ 𝑞∗2 ⇔

𝑞∗1 = 𝑞∗2 = 𝑞∗

(19)

Now, form Eq.(18) with 𝑞∗1 = 𝑞∗2 = 𝑞∗ we obtain:

(1 − 𝜇) ⋅ [𝛼 − 𝑏 ⋅ ln (2𝑞∗) − (2𝑐 +
𝑏
2𝑞∗) ⋅ 𝑞∗] + 𝜇 ⋅ 𝑏 = 0 ⇔

𝑏 ⋅ ln𝑞∗ + 2𝑐𝑞∗ + 𝑏 − 𝛼 − 𝜇𝑏
1 − 𝜇 − 𝑏

2 = 0 (20)

We consider the function 𝑘 (𝑥) = ℎ (𝑥) + 𝑏 ⋅ ln 2 − 𝑏
2 = ℎ (𝑥) + 𝑠, where 𝑠 = 𝑏 ⋅ ln 2− 𝑏

2 , with
𝐷𝑘 = 𝐷ℎ = (0, +∞). The function 𝑘 (𝑥) has also a unique positive solution 𝑥∗ = 𝑞∗ and
𝐸∗ = (𝑞∗, 𝑞∗) is the Nash equilibrium.

DOI 10.18502/kss.v4i1.5992 Page 252



EBEEC 2019

2.2.2. Stability of equilibriums

To study the stability of game's equilibriums, the Jacobian matrix is used. The Jacobian
matrix 𝐽(𝑞1, 𝑞2) along the variable strategy (𝑞1, 𝑞2) is:

𝐽 (𝑞1, 𝑞2) =
⎡
⎢
⎢
⎢⎣

𝑓𝑞1 𝑓𝑞2
𝑔𝑞1 𝑔𝑞2

⎤
⎥
⎥
⎥⎦

(21)

where:

𝑓 (𝑞1, 𝑞2) = 𝑞1 + 𝑘 ⋅ 𝑞1 ⋅
𝜕𝑈1
𝜕𝑞1

(22)

and

𝑔 (𝑞1, 𝑞2) = 𝑞2 + 𝑘 ⋅ 𝑞2 ⋅
𝜕𝑈2
𝜕𝑞2

(23)

The Jacobian matrix becomes:

𝐽 (𝑞∗1 , 𝑞∗2) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 + 𝑘 ⋅
(
𝜕𝑈1
𝜕𝑞1

+ 𝑞∗1 ⋅
𝜕2𝑈1

𝜕𝑞21 )
𝑘 ⋅ 𝑞∗1 ⋅

𝜕2𝑈1
𝜕𝑞1𝜕𝑞2

𝑘 ⋅ 𝑞∗2 ⋅
𝜕2𝑈2
𝜕𝑞2𝜕𝑞1

1 + 𝑘 ⋅
(
𝜕𝑈2
𝜕𝑞2

+ 𝑞∗2 ⋅
𝜕2𝑈2

𝜕𝑞22 )

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(24)

For the 𝐸1 the Jacobian matrix is:

𝐽 (𝐸1) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 + 𝑘 ⋅ [(1 − 𝜇) ⋅ (𝛼 − 𝑏 ⋅ ln𝑦1) + 𝜇𝑏] 0

𝑘 ⋅ 𝑞∗2 ⋅
𝜕2𝑈2
𝜕𝑞2𝜕𝑞1

1 + 𝑘 ⋅ 𝑞∗2 ⋅
𝜕2𝑈2

𝜕𝑞22

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢⎣

𝐴 0

𝐶 𝐵

⎤
⎥
⎥
⎥⎦

with 𝑇𝑟 = 𝐴 + 𝐵 and 𝐷𝑒𝑡 = 𝐴𝐵
From the characteristic equation of 𝐽 (𝐸1), we find two eigenvalues:

𝑟1 = 𝐴 and 𝑟2 = 𝐵
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Since

𝑟1 = 1 + 𝑘 ⋅ [(1 − 𝜇) ⋅ (𝛼 − 𝑏 ⋅ ln𝑦1) + 𝜇𝑏]

and

(1 − 𝜇) ⋅ (𝛼 − 𝑏 ⋅ ln𝑦1) + 𝜇𝑏 > 0

it's clearly seems that |𝑟1| > 1 and the 𝐸1 equilibrium is unstable.

For the 𝐸2 the Jacobian matrix becomes:

𝐽 (𝐸2) =
⎡
⎢
⎢
⎢
⎣

1 + 𝑘 ⋅ 𝑞∗1 ⋅
𝜕2𝑈1

𝜕𝑞21
𝑘 ⋅ 𝑞∗1 ⋅

𝜕2𝑈1
𝜕𝑞1𝜕𝑞2

0 1 + 𝑘 ⋅ [(1 − 𝜇) ⋅ (𝛼 − 𝑏 ⋅ ln𝑥1) + 𝜇𝑏]

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢⎣

𝐷 𝐹

0 𝐸

⎤
⎥
⎥
⎥⎦

with 𝑇𝑟 = 𝐷 + 𝐸 and 𝐷𝑒𝑡 = 𝐷𝐸.
From the characteristic equation of 𝐽 (𝐸2), we find two eigenvalues:

𝑟1 = 𝐷 and 𝑟2 = 𝐸

Since

𝑟2 = 1 + 𝑘 ⋅ [(1 − 𝜇) ⋅ (𝛼 − 𝑏 ⋅ ln𝑥1) + 𝜇𝑏]

and

(1 − 𝜇) ⋅ (𝛼 − 𝑏 ⋅ ln𝑥1) + 𝜇𝑏 > 0 Eq.(17),

it's clearly seems that |𝑟2| > 1 and the 𝐸2 equilibrium is unstable.
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For the 𝐸∗ the Jacobian matrix becomes:

𝐽 (𝐸∗) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 + 𝑘 ⋅ 𝑞∗ ⋅ 𝜕
2𝑈1

𝜕𝑞21
|(𝑞∗, 𝑞∗) 𝑘 ⋅ 𝑞∗ ⋅ 𝜕2𝑈1

𝜕𝑞1𝜕𝑞2 |(
𝑞∗, 𝑞∗)

𝑘 ⋅ 𝑞∗ ⋅ 𝜕2𝑈2
𝜕𝑞2𝜕𝑞1 |(

𝑞∗, 𝑞∗) 1 + 𝑘 ⋅ 𝑞∗ ⋅ 𝜕
2𝑈2

𝜕𝑞22
|(𝑞∗, 𝑞∗)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 − 𝑘 ⋅ (1 − 𝜇) ⋅ (2𝑐𝑞
∗ + 3𝑏

4 ) −14𝑘 ⋅ (1 − 𝜇) ⋅ 𝑏

−14𝑘 ⋅ (1 − 𝜇) ⋅ 𝑏 1 − 𝑘 ⋅ (1 − 𝜇) ⋅ (2𝑐𝑞
∗ + 3𝑏

4 )

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢⎣

𝐺 𝐻

𝐻 𝐺

⎤
⎥
⎥
⎥⎦

with 𝑇𝑟 = 2𝐺 and 𝐷𝑒𝑡 = 𝐺2 −𝐻2.

From the characteristic equation of 𝐽 (𝐸∗) we find two eigenvalues:

𝑟1 = 𝐺 +𝐻 and 𝑟2 = 𝐺 −𝐻

The 𝐸∗ is locally asymptotically stable if:

|𝑟𝑖| < 1, ∀𝑖 = 1, 2

Taking |𝑟1| < 1 the first stability condition is given by:

0 < 𝑘 < 2
(1 − 𝜇) ⋅ (2𝑐𝑞∗ + 𝑏) (25)

and taking |𝑟2| < 1 we have the second stability condition which is given by:

0 < 𝑘 < 2
(1 − 𝜇) ⋅ (2𝑐𝑞∗+ 𝑏

2)
(26)

As it seems the stability condition of Eq.(25) is the strongest one and this is the total
stability condition for the Nash equilibrium 𝐸∗.
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Proposition:

The Nash equilibrium of the discrete dynamical system Eq.(13) is locally asymptotically

stable if

0 < 𝑘 < 2
(1 − 𝜇) ⋅ (2𝑐𝑞∗ + 𝑏)

3. Numerical Simulations

3.1. Focusing on the parameter k (speed of adjustment)

In this section we present various numerical results focusing on the parameter k,
including bifurcation diagrams, Lyapunov numbers and sensitive dependence on initial
conditions (Kulenovic, M. and Merino, O. [21]). For this reason we choose to set some
fixed values to other parameters as: 𝛼 = 5, c = 1, b = 2 and 𝜇 = 0.2. By the bifurcation
diagrams of the parameter k against the variables 𝑞∗1 and 𝑞∗2 that are shown in Fig.1
is clear that the equilibrium undergoes a flip bifurcation at 𝑘 = 0.54. Then a further
increase in speed of adjustment implies that a stable two-period cycle emerges for
0.54 < 𝑘 < 0.66. As long as the parameter k reduces a four-period cycle, cycles of
highly periodicity and a cascade of flip bifurcations that ultimately lead to unpredictable
(chaotic) motions are observed when k is larger than 0.69.

 

Figure 1: Bifurcation diagrams with respect to the parameter k against the variables 𝑞1 and 𝑞2 with 400
iterations of the map Eq.(13) for 𝛼 = 5,𝑐 = 1,𝑏 = 2 and 𝜇 = 0.2.

This unpredictable (chaotic) behavior of the system Eq.(13) is visualized with the useful
tool of Lyapunov numbers (Fig.2) (i.e. the natural logarithm of Lyapunov exponents) as
a function of the parameter of interest. Figure 2 shows the Lyapunov numbers of the
orbit of the system of Eq.(13) for 𝛼 = 5,𝑐 = 1,𝑏 = 2,𝜇 = 0.2 and 𝑘 = 0.7. It is known that if
the Lyapunov number is greater than 1, one has evidence for chaos.
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Figure 2: Lyapunov numbers of the orbit of (0.1,0.1) with 8000 iterations of the map Eq.(13) for 𝛼 = 5,𝑐 =
1,𝑏 = 2,𝜇 = 0.2 and 𝑘 = 0.7.

Another characteristic of deterministic chaos is the sensitivity dependence on initial
conditions. In order to show the sensitivity dependence on initial conditions of the
system Eq.(13), we have computed two orbits with initial points (0.1,0.1) and (0.101,0.1)
respectively. Figure 3 shows the sensitivity dependence on initial conditions for 𝑞1−
coordinate of the two orbits, for the system Eq.(13), plotted against the time with the
parameter values 𝛼 = 5,𝑐 = 1,𝑑 = 0.5,𝜇 = 0.7 and 𝑘 = 0.58. At the beginning the time
series are indistinguishable; but after a number of iterations, the difference between
them builds up rapidly. From these numerical results when all parameters are fixed and
only k is varied the structure of the game becomes complicated through period doubling
bifurcations, more complex bounded attractors are created which are aperiodic cycles
of higher order or chaotic attractors.

      

Figure 3: Sensitive dependence on initial conditions for 𝑞1-coordinate plotted against the time: the orbit of
(0.1,0.1) (left) and the orbit of (0.101,0.1) (right) of the system Eq.(13) for 𝛼 = 5,𝑐 = 1,𝑏 = 2,𝜇 = 0.2 and 𝑘 = 0.7.

3.2. Focusing on the parameter 𝜇 (CS parameter)

The most interesting parameter of this game is the parameter 𝜇 which reveals the
percentage of the consumer surplus CS is taking account by each player. Setting the
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values of the parameters 𝛼 = 5,𝑐 = 1,𝑏 = 2and 𝑘 = 0.7 a complexity appears for low
values of the parameter 𝜇. The Nash equilibrium of the system Eq.(13) is under stability
when the parameter 𝜇 takes values greater than 0.48. Also the differentiation with other
studies is that the equilibrium (𝑞∗, 𝑞∗) is not a fixed point when the parameter 𝜇 is moving
into its stability region but it is changing and more specifically the larger the value of 𝜇,
the larger the values of 𝑞∗ is taken for the Nash equilibrium. These results are shown
by the bifurcation diagrams of Fig.4 and the chaotic behavior of the system Eq.(13) for
𝛼 = 5,𝑐 = 1,𝑏 = 2,𝑘 = 0.7 and 𝜇 = 0.15(outside the stability space) is visualized with the
Lyapunov numbers of Fig.5. Also, this chaotic behavior has the characteristic sensitivity
of this system on its initial conditions for the same values of these parameters (Fig.6).

Figure 4: Bifurcation diagrams with respect to the parameter 𝜇 against the variables 𝑞1 and 𝑞2 with 400
iterations of the map Eq.(13) for 𝛼 = 5,𝑐 = 1,𝑏 = 2 and 𝑘 = 0.7.

Figure 5: Lyapunov numbers of the orbit of (0.1,0.1) with 2000 iterations of the map Eq.(13) for 𝛼 = 5,𝑐 =
1,𝑏 = 2,𝑘 = 0.7 and 𝜇 = 0.15.
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Figure 6: Sensitive dependence on initial conditions for 𝑞1-coordinate plotted against the time: the orbit of
(0.1,0.1) (left) and the orbit of (0.101,0.1) (right) of the system Eq.(13) for 𝛼 = 5,𝑐 = 1,𝑏 = 2,𝑘 = 0.7 and 𝜇 = 0.15.

4. Conclusions

The present paper is a partial theoretical approach to our main ongoing research
objective, which is to quantify and study an oligopoly of the Greek market. We analyzed
through a discrete dynamical system the dynamics of a nonlinear discrete-time duopoly
game with a convex and log-linear demand and quadratic cost functions. We suppose
that the players not only pursue profit maximization but also take consumer surplus into
account. The stability of equilibria, bifurcation and chaotic behavior are investigated.
We showed that the speed of adjustment (k) and the parameter of social sensitivity (𝜇)
may change the stability of equilibrium and cause a structure to behave chaotically. For
low values of k or for high values of 𝜇 the Cournot-Nash equilibrium is stable. Increasing
(decreasing) these values, the equilibrium becomes unstable, through period doubling
bifurcation.
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