Identification and Detailed Characterization of Metal Oxide Powders as a Fundamental Chemical Product

Abstract

Here we propose a method for identification and detailed characterization of metal-oxide powders with patterns of energy-resolved density of electron traps (ERDT) and conduction-band bottom (CBB) position, as a fingerprint, measured by newly developed reversed double-beam photoacoustic spectroscopy (RDB-PAS).


 


 


Keywords: Electron Traps, Photoacoustic Spectroscopy, Metal-oxide Powders, Degree of Coincidence

References
[1] Nomenclature of Inorganic Chemistry, IUPAC Recommendations 2005, The Royal Society of Chemistry (2005).


[2] Nomenclature of Organic Chemistry, Sections A, B, C, D, E, F and H, 1979 Edition, Pergamon Press (1979).


[3] Compendium of Polymer Terminology and Nomenclature, IUPAC Recommendations 2008, The Royal Society of Chemistry.


[4] A Guide to IUPAC Nomenclature of Organic Compounds, Recommendations 1993, Blackwell (1993)


[5] S. Ikeda, N. Sugiyama, S.-y. Murakami, H. Kominami, Y. Kera, H. Noguchi, K. Uosaki, T. Torimoto B. Ohtani, Quantitative analysis of defective sites in titanium(IV) oxide photocatalyst powders, Phys. Chem. Chem. Phys., 5 (2003) 778–783.


[6] S. Hasegawa, T. Kawaguchi, Surface properties and photoconductivity of hydrogenreduced titanium(IV) oxide (in Japanese), Nihon Kagaku Zasshi, 92 (1971) 389 392.


[7] U. Kölle, J. Moser, M. Grätzel, Dynamics of interfacial charge-transfer reactions in semiconductor dispersions. Reduction of cobaltoceniumdicarboxylate in colloidal TiO2 , Inorg. Chem., 24 (1985) 2253-2258.


[8] T. Miyagi, T. Ogawa, M. Kamei, Y. Wada, T. Mitsuhashi, A. Yamazaki, E. Ohta, T. Sato, Deep level transient spectroscopy analysis of an anatase epitaxial film grown by metal organic chemical vapor deposition, Jpn. J. Appl. Phys., 40 (2001) L404–L406.


[9] B. Ohtani, Y. Ogawa, S.-i. Nishimoto, Photocatalytic Activity of Amorphous-Anatase Mixture of Titanium(IV) Oxide Particles Suspended in Aqueous Solutions, J. Phys. Chem. B 101 (1997) 3746-3752.


[10] Y. Shiraishi, H. Hirakawa, Y. Togawa, Y. Sugano, S. Ichikawa, T. Hirai, rutile crystallites isolated from Degussa (Evonik) P25 TiO2 : Highly efficient photocatalyst for chemoselective hydrogenation of nitroaromatics, ACS Catal., 3 (2013) 2318–2326.


[11] M. Buchalska, M, Kobielusz, A. Matuszek, M. Pacia, S. Wojtyła, W. Macyk, On oxygen activation at rutile– and anatase–TiO2 , ACS Catal, 5 (2015) 7424–7431.


[12] T. Toyoda, S. Shimamoto, Effects of Bi2O3 Impurities in Ceramic ZnO on Photoacoustic Spectra and Current-Voltage Characteristics, Jpn. J. Appl. Phys. 37 (1998) 2827–2831.


[13] T. Toyoda, H. Kawano, Q. Shen, A. Kotera, M. Ohmori, Characterization of Electronic States of TiO2 Powders by Photoacoustic Spectroscopy, Jpn. J. Appl. Phys. 39 (2000) 3160–3163.


[14] T. Toyoda, I. Tsuboya, Apparent band-gap energies of mixed TiO2 nanocrystals with anatase and rutile structures characterized with photoacoustic spectroscopy, Rev. Sci. Instrum. 74 (2003) 782–784.


[15] N. Murakami, O.-O. Prieto-Mahaney, T. Torimoto, B. Ohtani, Photoacoustic spectroscopic analysis of photoinduced change in absorption of titanium(IV) oxide photocatalyst powders: A novel feasible technique for measurement of defect density, Chem. Phys. Lett. 426 (2006) 204–208.


[16] N. Murakami, R. Abe, O.-O. Prieto-Mahaney, T. Torimoto, B. Ohtani, Photoacoustic spectroscopic estimation of electron mobility in titanium(IV) oxide photocatalysts, Stud. Surf. Sci. Catal. 172 (2007) 429–432.


[17] N. Murakami, O.-O. Prieto-Mahaney, R. Abe, T. Torimoto, B. Ohtani, Double-Beam Photoacoustic Spectroscopic Studies on Transient Absorption of Titanium(IV) Oxide Photocatalyst Powders, J. Phys. Chem. C 111 (2007) 11927–11935.


[18] A. Nitta, M. Takase, M. Takashima, N. Murakami, B. Ohtani, A fingerprint of metaloxide powders: energy-resolved distribution of electron traps, Chem. Commun., 52 (2016) 12096–12099.


[19] A. Nitta, M. Takashima, N. Murakami, M. Takase, B. Ohtani, Reversed double-beam photoacoustic spectroscopy of metal-oxide powders for estimation of their energyresolved distribution of electron traps and electronic-band structure, Electrochim. Acta 264 (2018) 83-90.


[20] L. Kavan, M. Grätzel, S. E. Gilbert, C. Klemenz, J. Scheel, Electrochemical and Photoelectrochemical Investigation of Single-Crystal Anatase, J. Am. Chem. Soc. 118 (1996) 6716–6723.