Application of Balsa Composite in Curved Structures and Its Business Establishment: A Feasibility Study

Abstract

Balsa wood (Ochroma pyramidalei) are widely available in Indonesian market especially in the creative industry. Balsa wood was preferred due to its excellent strength to weight ratio in-line with workability and the simplicity of its color and texture. Balsa composite has increased the economic value of balsa wood and widen its use from merely lightweights and non-structural objects to some efficient super-structures. The development of balsa composite into curved structure add another level of design sophistication and widen the variation of its use. Application of this material in a shell structure allowed the structure to have more strength to weight excellence, since the shell structure itself had already had excellent depth to span ratio. The added value of the application in Indonesia is expected to add significant contribution in national agroforestry and construction sector. However, introducing the material into construction industry required further examination, especially related to the stability of supplies (forestry management), manufacture readiness, and human resources. This paper showed a theoretical and statistical feasibility study of manufacture-scale business establishment in Indonesia.


 


 


Keywords: balsa, engineered wood, manufacture, composite, feasibility study.

References
[1] Usop TB. Pelestarian arsitektur tradisional Dayak pada pengenalan ragam bentuk konstruksi dan teknologi tradisional Dayak di Kalimantan Tengah. Jurnal Perspektif Arsitektur Volume. 2014;9(2).


[2] Zakiah H, Octavia HC. Studi adaptasi rumah vernakular Kutai terhadap lingkungan rawan banjir di Tenggarong 2013.


[3] Sudarmin S. Kajian tipologi morfologi rumah vernakular di daerah Teratak Buluh. Jurnal Arsitektur: Arsitektur Melayu dan Lingkungan. 2015;2(1).


[4] Taal S. The limas house of Palembang. In: Schefold R, Nas PJM, Wessing R, editors. Indonesian houses vol 2: survey of vernacular architecture in Western Indonesia. 2.; 251. Leiden, The Netherlands: KITLV Press; 2008.


[5] Alimansyur M, Makmur Z, Sidin T. Arsitektur tradisional daerah Sumatera Selatan. Direktorat Jenderal Kebudayaan; 1985.


[6] Statistik produksi kehutanan. 2014. Jakarta: Badan Pusat Statistik; 2014.


[7] Charomaini, M., & Windiasih, S. R. D. (2005). Peningkatan Daya Kecambah Benih Balsa melalui Perendaman dalam Air dan Larutan Kimiawi. Jurnal Penelitian Hutan Tanaman, 2(2), 68-73.


[8] Osei-Antwi, M., De Castro, J., Vassilopoulos, A. P., & Keller, T. (2013). Shear mechanical characterization of balsa wood as core material of composite sandwich panels. Construction and Building Materials, 41, 231-238.


[9] Midgley, S. (2015). Balsa Industry, PNG: Market analysis and strategic development. ACIAR Balsa Market Report). ACIAR.


[10] O’Neill, K. (2010). Feasibility Study Of Lightweight High-strength Hollow Core Balsafrp Composite Beams under Flexure.


[11] Bar, M., & Neta, M. (2007). Visual elements of subjective preference modulate amygdala activation. Neuropsychologia, 45(10), 2191-2200.


[12] Cramer, J., & Browning, W. (2008). Transforming building practices through biophilic design. Biophilic design. Hoboken: Wiley, 335, 346.


[13] Iwamoto, L. (2013). Digital fabrications: architectural and material techniques: Princeton Architectural Press.


[14] Adriaenssens, S., Block, P., Veenendaal, D., & Williams, C. (2014). Shell Structures for Architecture: Form Finding and Optimization


[15] García, V. A., & Díaz, J. A. (2013). Great light spans. Geometry and simple structural behaviour. 2nd half of the book


[16] Kuijvenhoven, M. (2009). A Design Method for Timber Grid Shell.


[17] Keller, T., Rothe, J., De Castro, J., & Osei-Antwi, M. (2013). GFRP-balsa sandwich bridge deck: Concept, design, and experimental validation. Journal of Composites for Construction, 18(2), 04013043.


[18] Astasari, A., Sutikno, S., & Wijanarko, W. (2017). Bending and Torsional Characteristics of Carbon Fiber and Balsa Wood Sandwich Composite. IPTEK Journal of Proceedings Series(2), 5-9.


[19] Alex, T., Winarni, B., Kusuma, I. W., Arung, E. T., & Budiarso, E. (2017). The clay nanoparticle impregnation for increasing the strength and quality of sengon (Paraserianthes falcataria) and white meranti (Shorea bracteolata) timber. NUSANTARA BIOSCIENCE, 9(1), 107-110.


[20] Mohammadi, M. S. & Nairn, J. A. (2017). Balsa sandwich composite fracture study: Comparison of laminated to solid balsa core materials and debonding from thick balsa core materials. Composites Part B: Engineering, 122, 165-172.


[21] Strong, A. B. (2008). Fundamentals of composites manufacturing: materials, methods and applications. Society of Manufacturing Engineers.


[22] Riany M, Rachmadi Y, Sambira IY, Muharam AT, Taufik RM. Kajian aspek kosmologisimbolisme pada arsitektur rumah tinggal vernakular di Kampung Naga. REKA KARSA. 2014;2(4).


[23] Mirsa, R. (2013). Rumoh Aceh: Graha Ilmu.