Students' Ontogenic and Epistemological Obstacles on the Topic of Pyramid Volume
Abstract
The concept of pyramid volume has been studied at the starting of the elementary school (SD) level and studied more deeply in junior high school (SMP). However, many students make mistakes in solving problems related to the volume of pyramids. This study aims to identify the ontogenic and epistemological obstacles of students in understanding the concept of pyramid volume. This is a qualitative research using a Didactical Design Research (DDR). Sixteen students of grade IX in Bandung who had studied the concept of pyramid volume participated in the study. Data were obtained by analyzing respondents’ ability tests and interviews to solve problems related to the volume of pyramids. Characteristics of ontogenic and epistemological obstacles were found in students’ knowledge in solving problems related to the concept of pyramid volume. The results showed that students experienced several ontogenic and epistemological obstacles which resulted in errors in problem-solving.
Keywords: epistemological obstacles, pyramid volume, students’ ontogenic
References
[1] Mujahidah Annisa A, Suryadi D, Rosjanuardi R. “Design development of determinant lines materials and angles on math learning for junior high school.,” In: Proceedings of the University of Muhammadiyah Malang’s 1st International Conference of Mathematics Education (INCOMED 2017). pp. 1–9. Atlantis Press, Paris, France (2018).
[2] Cahyaningrum S, Sumardi. “Identifikasi kesulitan dalam menyelesaikan soal cerita pokok bahasan prisma dan lima siswa kelas VIII semester II SMP Negeri 4 Delangu Tahun Ajaran 2014/2015.” In: Proceedings of the National Academy of Sciences. pp. 1–15 (2015).
[3] Fuadiah NF, Sawitri ZA. A new learning trajectory on the pyramid volume for secondary school. J Phys Conf Ser. 2020;1480(1):012028.
[4] Aziiza YF, Rosjanuardi R, Juandi D. Didactic design of the concept of surface area of flat-sided prism based on van Hiele’s theory in online learning. Jurnal Pendidikan Matematika. 2022;16(1):73–88.
[5] Hidayat CR, Rosjanuardi R, Juandi D. “Epistemological obstacle on the topic of triangle and quadrilateral.,” In: International Conference on Mathematics and Sience Education. IOP Publishing, Jawa Barat (2019). https://doi.org/10.1088/1742- 6596/1157/4/042110.
[6] Kemdikbud, Permendikbud Nomor 37 tahun 2018 tentang perubahan atas PermenDikbud No. 24 tahun 2016 tentang kompetensi inti dan kompetensi dasar pelajaran pada kurikulum 2013 pada Pendidikan Dasar dan Pendidikan Menengah., Indonesia, 2018.
[7] Turmudi, “Pembelajaran matematika kini dan kecenderungan masa mendatang.,” In: Bunga Rampai Pembelajaran MIPA. pp. 1–28. UPI, FPMIPA, UPI, Jawa Barat (2010).
[8] Nur’aeni A. Desain didaktis konsep barisan dan deret aritmetika pada pembelajaran Matematika Sekolah Menengah Atas. Journal of Mathematics Education Research. 2017;1(1):1–10.
[9] Siti Aisah L. Kusnandi, and K. Yulianti, “Desain didaktis konsep luas permukaan dan volume prisma dalam pembelajaran Matematika SMP.” M A T H L I N E : Jurnal Matematika dan Pendidikan Matematika. 2016;1(1):14–22.
[10] Sulistiawati. “Analisis kesulitan belajar kemampuan penalaran matematis siswa SMP pada materi luas permukaan dan volume limas.” In: Proceeding Seminar Nasional Pendidikan Matematika. pp. 205–225. Dan Tik Stkip Surya, Sains (2014).
[11] Rosmalia NL. “Desain didaktis luas permukaan dan volume limas pada pembelajaran matematika di SMP,” http://repository.upi.edu/18752/, (2015).
[12] Turk A, Fairclough E, Grason Smith G, Lond B, Nanton V, Dale J. Exploring the perceived usefulness and ease of use of a personalized web-based resource (care companion) to support informal caring: qualitative descriptive study. JMIR Aging. 2019 Aug;2(2):e13875.
[13] Kandaga T, Rosjanuardi R, Juandi D. Epistemological obstacle in transformation geometry based on van Hiele’s level. Eurasia J Math Sci Technol Educ. 2022;18(4):em2096. https://doi.org/10.29333/ejmste/11914.
[14] Brousseau G. Theory of didactical situations in mathematics: Didactique des mathématiques. Springer Science & Business Media. Jerman; 2006.
[15] Suryadi D. “Didactical Design Research (DDR) dalam pengembangan pembelajaran matematika.,” In: Joint Conference UPI-UiTM 2011. pp. 12., Indonesia (2011).
[16] Salamah U. Berlogika dengan matematika 2: untuk kelas VIII SMP dan MTS. PT. Tiga Serangkai Pustaka Mandiri. Solo; 2015.