Enhancing Students' Conceptual Understanding of Chemistry in a SiMaYang Learning Environment
Abstract
Students’ conceptual understanding of chemistry needs to be supported by the skill to think at three levels of representation. Many students have difficulty understanding chemistry concepts because of it. Chemistry teaching needs to provide a learning environment that involves chemical representations to facilitate students’ interconnection skills of three levels of representation and ultimately improve students’ conceptual understanding. SiMaYang learning was designed by integrating chemical representation during the learning process. This study aimed to enhance students’ conceptual understanding of chemistry through the implementation of SiMaYang learning. A descriptive quantitative research method with one group pretest-posttest design was used in this study. Students’ conceptual understanding was measured using three sets of essay tests containing macroscopic, symbolic, and submicroscopic tests for the topic of the buffer concept. The research data were analyzed descriptively and statistically using N-gain and paired sample t-tests. The results of the paired sample t-test showed the sig value. 0.000 <0.05, which means SiMaYang learning affects increasing students’ conceptual understanding of chemistry. The finding of this study informed the students’ conceptual understanding of chemistry increased in the medium category (N-gain = 0.62). SiMaYang learning, which was designed to involve three levels of representation, can increase students’ conceptual understanding of chemistry.
Keywords: chemistry, conceptual understanding ,SiMaYang learning environment
References
[1] Harizal ZM. Analyzing of students’ misconceptions on acid-base chemistry at senior high schools in Medan. J Educ Pract. 2012;3(15):65–74.
[2] Parastuti WI, Ibnu S. Miskonsepsi siswa pada materi. Teori, Penelitian, dan Pengembangan. 2016;1(12): 2307–2313.
[3] Ulva Y, Santosa A, and Parlan, Identifikasi tingkat pemahaman konsep larutan penyangga. Jurnal Pembelajaran Kimia. 2016;1(2):69–75.
[4] Alighiri D, Drastisianti A, Susilaningsih E. Pemahaman konsep siswa materi larutan penyangga dalam pembelajaran multiple representasi. Jurnal Inovasi Pendidikan Kimia. 2018;12(2):2192–200.
[5] Yuanita SL, Ibrahim M, Keterkaitan model mental mahasiswa dengan penguasann konsep stoikiometri sebelum dan sesudah pembelajaran. Seminar Nasional Pendidikan Sains PPs. pp. 499–509, 2013.
[6] Tasker R, Dalton R. Research into practice: visualisation of the molecular world using animations. Chem Educ Res Pract. 2006;7(2):141–59.
[7] Gkitzia V, Salta K, Tzougraki C. Students’ competence in translating between different types of chemical representations. Chem Educ Res Pract. 2020;21(1):307–30.
[8] Rau MA. Enhancing undergraduate chemistry learning by helping students make connections among multiple graphical representations. Chem Educ Res Pract. 2015;16(3):654–69.
[9] Sunyono S, Meristin A. The effect of multiple representation-based learning (MRL) to increase students’ understanding of chemical bonding concepts. Jurnal Pendidikan IPA Indonesia. 2018;7(4):399–406.
[10] Upahi JE, Ramnarain U. Representations of chemical phenomena in secondary school chemistry textbooks. Chem Educ Res Pract. 2019;20(1):146–59.
[11] Sunyono. Model Pembelajaran Multipel Representasi. 2015.
[12] Sunyono IS, Tasviri E. Penerapan simayang tipe ii untuk meningkatkan model mental dan penguasaan konsep siswa. Jurnal Pendidikan dan Pembelajaran Kimia. 2015;4(1):172–183.
[13] Sunyono IS, Tasviri E. Penerapan simayang tipe ii untuk meningkatkan model mental dan penguasaan konsep siswa. Jurnal Pendidikan dan Pembelajaran Kimia. 2015;4(1):807-819.
[14] Herawati RF, Mulyani S, Redjeki T. Pembelajaran kimia berbasis multiple representasi ditinjau dari kemampuan awal terhadap prestasi belajar laju reaksi siswa SMA Negeri I Karanganyar tahun pelajaran 2011/2012 [ JPK]. Jurnal Pendidikan Kimia. 2013;2(2):38–43.
[15] Ye J, Lu S, Bi H. The effects of microcomputer-based laboratories on students macro, micro, and symbolic representations when learning about net ionic reactions. Chem Educ Res Pract. 2019;20(1):288–301.
[16] Ramnarain U, Joseph A. Learning difficulties experienced by grade 12 South African students in the chemical representation of phenomena. Chem Educ Res Pract. 2012;13(4):462–70.
[17] Baldwin N, Orgill MK. Relationship between teaching assistants’ perceptions of student learning challenges and their use of external representations when teaching acid-base titrations in introductory chemistry laboratory courses. Chem Educ Res Pract. 2019;20(4):821–36.
[18] Jaber LZ, BouJaoude S. A Macro-Micro-Symbolic teaching to promote relational understanding of chemical reactions. Int J Sci Educ. 2012;34(7):973–98.
[19] Sholihah NA, Arif S. Efektivitas model pembelajaran Simayang berbantuan flash card terhadap kemampuan representasi siswa. Jurnal Ilmiah Pendidikan IPA. 2020;7(1):64–72.
[20] Fitri A, Sahputra R, Rasmawan R, Enawaty E, Masriani M. “Pengembangan lembar kerja peserta didik berbasis predict-observe-explain pada sub materi pergeseran kesetimbangan.,” Jurnal Pendidikan Informatika dan Sains. 2022;11(1):12- 28. https://doi.org/10.31571/saintek.v11i1.3606.
[21] Yunus SR, Sudarto, Wahyuni. Pencapaian hasil belajar ipa melalui model pembelajaran simayang berbasis multi representasi. Prosiding Seminar Nasional Biologi; 2014. p. 293–298, 2018.
[22] Smetana LK, Bell RL. Computer simulations to support science instruction and learning: a critical review of the literature. Int J Sci Educ. 2012;34(9):1337–70.
[23] Hilton A, Nichols K. Representational classroom practices that contribute to students’ conceptual and representational understanding of chemical bonding. Int J Sci Educ. 2011;33(16):2215–46.
[24] Tuysuz M, Ekiz B, Bektas O, Uzuntiryaki E, Tarkin A, Kutucu ES. Pre-service chemistry teachers’ understanding of phase changes and dissolution at macroscopic, symbolic, and microscopic levels. Procedia - Social and Behavioral Sciences. 2011;15(Dec):452- 455. https://doi.org/10.1016/j.sbspro.2011.03.120.
[25] Talanquer V. Macro, submicro, and symbolic: the many faces of the chemistry ‘triplet,’. Int J Sci Educ. 2011;33(2):179–95.
[26] Ferreira JE, Lawrie GA. Profiling the combinations of multiple representations used in large-class teaching: pathways to inclusive practices. Chem Educ Res Pract. 2019;20(4):902–23.