Identification of Subsurface Materials in Landslide-Susceptible Areas in the Pacet-Trawas Road Corridor Using the Geoelectrical Resistivity Method

Abstract

Landslides are caused by changes in the structure of subsurface materials on steep slopes due to weathered rock conditions and soil pores in saturated conditions. This study used the geoelectric resistivity method to identify the type and structure of subsurface materials in landslide-susceptible areas in the Pacet-Trawas road corridor, in Pacet District, Mojokerto Regency. The research location was an area with undulating to mountainous morphology. The geoelectrical resistivity configuration used was dipole-dipole with a measuring path length of 100 meters at three measurement points. The measurement location was based on geological formations and the distribution of landslide points along the Pacet-Trawas road corridor. The three 2D models produced showed resistivity values between 8.11 Ohm.m to 390 Ohm.m. The subsurface materials consisted of groundwater, volcanic breccia, lava rock, tuffaceous breccia, conglomerate, and andesite-basaltic at a depth of 1.5 meters to 25 meters below the ground surface. The research area was dominated by the parent rock structure of lava, volcanic breccia, basalt, and andesite. Locations with a high landslide threat were located at points two and three with subsurface materials of the conglomerate type and volcanic breccia.


Keywords: geoelectrical resistivity, dipole-dipole, subsurface material

References
[1] Badan Nasional Penanggulangan Bencana. Data Informasi Bencana Indonesia. Jakarta Timur : Pusat Data Informasi dan Komunikasi Kebencanaan; 2020 Sep 12. Available from: http://dibi.bnpb.go.id/

[2] Badan Penanggulangan Bencana Daerah. Data longsor tahun 2015 sampai 2020 di kecamatan pacet. Kabupaten Mojokerto: Badan Penanggulangan Bencana Daerah; 2020.

[3] van Westen CJ, Castellanos E, Kuriakose SL. Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Engineering Geology. 2008; Volume 102 (Issue 3-4):112–131.

[4] van Zuidam RA. Aerial photo-interpretation in terrain analysis and geomorphologic mapping. The Hague, Netherlands: Smith Publisher; 1985.

[5] Verstappen HT. Geomorfologi terapan (Survei geomorfologikal untuk pengembangan lingkungan. Yogyakarta: Ombak; 2014.

[6] Bronto S, Zaenudin A, Erfan RD. Peta geologi gunungapi arjuno-welirang, jawa timur. Bandung: Direktorat Vulkanologi; 1985.

[7] Kusumadinata K. Data dasar gunungapi Indonesia. Bandung: Direktorat Vulkanologi; 1979.

[8] Irawan LY, Sumarmi S, Bachri S, Panoto D, Pradana IH, Faizal R. Landslides susceptibility mapping based on geospatial data and geomorphic attributes – A case study: Pacet, Mojokerto, East Java. IOP Conf Series: Earth and Environmental Science. 2021 Sep 12; East Java, Indonesia. Available from https://iopscience.iop.org/article/10.1088/1755-1315/747/1/012002/pdf

[9] Bachri S, Utomo KSB, Sumarmi S, Fathoni MN, Aldianto YE. Optimalisai model artificial neural network menggunakan certainly favtor (C-ANN) untuk pemetaan kerawanan tanah longsor skala semi-detil di DAS bendo, kabupaten banyuwangi. Majalah Geografi Indonesia. 2021;35:1-8.

[10] Noviyanto A, Sartohadi J, Purwanto BH. The distribution of soil morphological characteristics for landslide-impacted Sumbing Volcano, Central Java – Indonesia. Geoenvironmental Disaster. 2020;7:1-19.

[11] Todd DK. Groundwater hydrology. New York: John Wiley & Sons; 1980.

[12] Telford W. Applied geophysics. 2nd ed. Cambridge: Cambridge University Press; 1990.

[13] Holmes J, Chambers J, Meldrum P, Wilkinson P, Boyd J, Williamson P, Huntley D, Sattler K, Elwood D, Sivakumar V, Reeves H, Donohue S. Four-dimensional electrical resistivity tomography for continuous near-real-time monitoring of a landslide affecting transport infrastructure in British Columbia, Canada. Near Surface Geophysics. 2020; Volume 18 9Issue 4):337-351.

[14] Bellanova J, Calamita G, Giocoli A, Luongo R, Macchiato M, Perrone A, Uhlemann S, Piscitelli S. Electrical resistivity imaging for the characterization of the Montaguto landslide (Southern Italy). Engineering Geology. 2018; Volume 234:1-22.

[15] Permanasari INP, Akbar MF, Handayani G, Hendarajaya L. Determination of the type of soil using 2D geoelectric method and laboratory analysis for landslide area Cililin West Java. Journal of Physics: Conference Series. 2016 Nov 2-3; Bandung, Indonesia.

[16] Available from https://iopscience.iop.org/article/10.1088/1742-6596/1127/1/012042/pdf

[17] Setyawan A, Fikri MS, Suseno JE, Fuad M. Lithology and characteristic of landslide in Gombel Hill by 2D geoelectric resistivity method using dipole-dipole configuration. Journal of Physics: Conference Series. 2017 Okt 17; Semarang, Indonesia. Available from https://iopscience.iop.org/article/10.1088/1742-6596/1025/1/012019/pdf

[18] Nordiana NN, Azwin LN, Nawawi MNM, Khalil AE. Slope failures evaluation and landslide investigation using 2-D resistivity method NRIAG. Journal of Astronomy and Geophysics. 2017; Volume 7 (Issue 1):1-6.

[19] Hutagalung R, Bakker E. Identifikasi jenis batuan menggunakan metode geolistrik resistivitas konfigurasi schlumberger dalam perencanaan pondasi bangunan di terminal transit desa passo. Prosiding FMIPA, Universitas Pattimura. 2013 – ISBN: 978-602-97522-0-5:159-167.

[20] Utama WU, Harijoko A, Husein S. Studi vulkanisme dan struktur geologi untuk eksplorasi awal panas bumi di kompleks gunungapi arjuno welirang. Proceeding Seminar Nasional Kebumian Ke-9. 2016 Okt 6-7; Yogyakarta, Indonesia. Departemen Teknik Geologi FT UGM; 2020 [cited 2021 Jun 3]. Available from https://repository.ugm.ac.id/273466/1/8.%20EOA-01%20Studi%20Vulkanisme% 20Dan%20Struktur%20Geologi%20Untuk%20Eksplorasi%20Awal%20Panas% 20Bumi%20Di%20Kompleks%20Gunung%20Api%20Arjuno%20Welirang- %20Utama%2C%20H.%20W.%2C%20et%20al.pdf

[21] Daud Y, Nuqramadha WA, Fahmi F, Sesega RS, Fitrianita F Pratama SA, Munandar A. Resistivity characterization of the arjuno-welirang volcanic geothermal system (Indonesia) through 3-D magnetotelluric inverse. Modeling Journal of Asian Earth Science. 2019; Volume 174:352-363

[22] Fajrina YN. Karakterisasi parameter fisik batuan vulkanik gunung arjuno-welirang, Jawa Timur. Jurnal Geosaintek. 2016;2:91-98.

[23] Varnes DJ. Slope movement types and processes. Landslide analysis and control. Washington D.C: Transportation Research Board; 1968.

[24] International Geotechnical Societies, UNESCO Working Party on World Landslide Inventory. A suggested method for describing the activity of a landslide. Bulletin International Association of Engineering Geology. 1993;47:53-57.

[25] Lazzari M, Giola D. Regional-scale landslide inventory, Central-Western sector of the Basilicata region (Southern Apennines, Italy). Journal of Maps. 2016;12:852-859.

[26] Raso E, Cevasco A, Matire DD, Pepe G, Scarpellini P, Calcaterra D, Firpo M. Landslideinventory of the Cinque Terre National Park (Italy) and quantitative interaction with the trail network. Journal of Maps. 2019;15:818-830.

[27] Bucci F, Santangelo M, Fiorucci F, Ardizzone F, Giordan D, Cignetti M, Notti D, Allasia P, Godone D, Lagomarsino D, Pozzoli A, Norelli E, Cardinali M. Geomorphologic landslide inventory by air photo interpretation of the high Agri Valey (Southern Italy). Journal of Maps. 2021; Volume 17 (Issue 2):1-13.