Optically Active Defects Induced by 10 MeV Electron Beam in Transparent MgAl2O4 Ceramics

Abstract

In the synthesized MgAl2O4 ceramics, Raman scattering modes were detected due to the presence of random distribution of cations over structural positions (structural reversal effects). Irradiation by 10 MeV electron beam caused intensity redistribution of the fundamental bands in Raman spectrum. New optical absorption bands were registered. Observed features were attributed to the effect of radiation-induced ‘ionic mixing’ in cation sublattice. This effect is the formation of additional [Al]

References
[1] Aizawa, H., Ohishi, N., Ogawa, S., et al. (2002). Characteristics of chromium doped spinel crystals for a fiber-optic thermometer application. Review of Scientific Instruments, vol. 73, pp. 3089–3092.


[2] Jouini, A., Yoshikawa, A., Brenier, A., et al. (2007). Optical properties of transition metal ion-doped MgAl2O4 spinel for laser application. Physica Status Solidi C., vol. 4, pp. 1380–1383.


[3] Kishimoto, N., Takeda, Y., Umeda, N., et al. (2000). Metal nanocrystal formation in magnesium aluminate spinel and silicon dioxide with high-flux Cu− ions. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 166, pp. 840–844.


[4] Konings, R. J. M., Conrad, R., Dassel, G., et al. (2000). The EFTTRA-T4 experiment on americium transmutation. Journal of Nuclear Materials, vol. 282, pp. 159–170.


[5] Nakagawa, H., Ebisu, K., Zhang, M., et al. (2003). Luminescence properties and afterglow in spinel crystals doped with trivalent Tb ions. Journal of Luminescence, vol. 102, pp. 590–596.


[6] Chen, X. Y., Ma, C., Zhang, Z. J., et al. (2009). Structure and photoluminescence study of porous red-emitting MgAl2O4: Eu3+ phosphor. Microporous and Mesoporous Materials, vol. 123, pp. 202–208.


[7] Hanamura, E., Kawabe, Y., Takashima, H., et al. (2003). Optical properties of transition-metal doped spinels. Journal of Nonlinear Optical Physics & Materials, vol. 12, pp. 467–473.


[8] Rubat du Merac, M., Kleebe, H. J., Müller, M. M., et al. (2013). Fifty years of research and development coming to fruition; unraveling the complex interactions during processing of transparent magnesium aluminate (MgAl2O4) spinel. Journal of the American Ceramic Society, vol. 96, pp. 3341–3365.


[9] Clinard, F. W., Jr. (1987). Ceramics for fusion applications. Ceramics International, vol. 13, pp. 69–75.


[10] Vest, A. (1988). Solid State Chemistry. Theory and applications. Part 2. Moscow: Mir. (in Russian)


[11] Krupichka, S. and Pohomov, A. S. (1976). Physics of Ferrites and Related Magnetic Oxides. Moscow: Mir. (in Russian)


[12] Chaschukhin, I. P., Votyakov, S. L., and Shchapova, Yu. U. (2007). Crystallochemistry of Chrome-spinels and Oxy-thermobarometry of Ultramafites of Folded Regions. Yekaterinburg: Institute of Geology and Geochemistry UB RAS. (in Russian)


[13] Andreozzi, G. B. and Princivalle, F. (2002). Kinetics of cation ordering in synthetic MgAl2O4 spinel. American Mineralogist, vol. 87, pp. 838–844.


[14] White, G. S., Jones, R. V., Crawford, J. H., Jr. (1982). Optical spectra of MgAl2O4 crystals exposed to ionizing radiation. Journal of Applied Physics, vol. 53, pp. 265–270.


[15] Gilbert, C. A., Smith, R., Kenny, S. D., et al. (2009). A theoretical study of intrinsic point defects and defect clusters in magnesium aluminate spinel. Journal of Physics: Condensed Matter, vol. 21, p. 275406.


[16] Skvortsova, V., Mironova-Ulmane, N., and Ulmanis, U. (2002). Neutron irradiation influence on magnesium aluminum spinel inversion. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 191, pp. 256–260.


[17] White, G. S., Jones, R. V., and Crawford, J. H., Jr. (1982). Optical spectra of MgAl2O4 crystals exposed to ionizing radiation. Journal of Applied Physics, vol. 53, pp. 265–270.


[18] Sawai, S. and Uchino, T. (2012). Visible photoluminescence from MgAl2O4 spinel with cation disorder and oxygen vacancy. Journal of Applied Physics, vol. 112, p. 103523.


[19] Ibarra, A., Bravo, D., Garcia, M. A., et al. (1998). Dose dependence of neutron irradiation effects on MgAl2O4 spinels. Journal of Nuclear Materials, vol. 258, pp. 1902–1907.


[20] Kazarinov, Yu., Kvatchadze, V., Gritsyna, V., et al. (2017). Spectroscopic studies of defects in gamma-and neutron-irradiated magnesium aluminates spinel ceramics. Problems of Atomic Science and Technology, vol. 5, pp. 8–13.


[21] Tyutyunik, O. K., Moskvitin, A. O., Kazarinov, Y. G., et al. (2010). Radioluminescence mechanism of magnesium aluminate spinel in transparent ceramics. Functional Materials.


[22] Costantini, J. M., Lelong, G., Guillaumet, M., et al. (2016). Color-center production and recovery in electron-irradiated magnesium aluminate spinel and ceria. Journal of Physics: Condensed Matter, vol. 28, p. 325901.


[23] D’Ippolito, V., Andreozzi, G. B., Bersani, D., et al. (2015). Raman fingerprint of chromate, aluminate and ferrite spinels. Journal of Raman Spectroscopy, vol. 46, pp. 1255–1264.


[24] Cynn, H., Anderson, O. L., and Nicol, M. (1993). Effects of cation disordering in a natural MgAl2O4 spinel observed by rectangular parallelepiped ultrasonic resonance and Raman measurements. Pure and Applied Geophysics, vol. 141, pp. 415–444.


[25] Mikenda, W. and Preisinger, A. (1981). N-lines in the luminescence spectra of Cr3+- doped spinels (II) origins of N-lines. Journal of Luminescence, vol. 26, pp. 67–83.