Optical Properties of Cu2S/SnS2 Precursor Layers for the Preparation of Kesterite Cu2SnS3 Photovoltaic Absorber


The Cu2S and SnS2 layers have been prepared by the chemical bath deposition method. The results of SEM and EDX analyses confirm a high stoichiometry of the synthesized semiconductor thin films. The optical properties of the Cu2S and SnS2 layers have been studied, and the optical band gap values have been determined.

Keywords: thin films, sulfides, band gap, hydrochemical deposition, transmittance, photovoltaic absorber

[1] Jackson, P., Wuerz, R., Hariskos, D., et al. (2016). Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%. Physica Status Solidi RRL, vol.10, pp. 583–586.

[2] Nakashima, M., Yamaguchi, T., Itani, H., et al. (2015). Cu2SnS3 thin film solar cells prepared by thermal crystallization of evaporated Cu/Sn precursors in sulfur and tin atmosphere. Physica Status Solidi C., vol. 12, pp. 761–764.

[3] Zawadzki, P., Baranowski, L. L., Peng, H. W., et al. (2013). Evaluation of photovoltaic materials within the Cu Sn–S family. Applied Physics Letters, vol. 103, p. 253902.

[4] Fu, H. (2018). Environmental-friendly and earth-abundant colloidal chalcogenide nanocrystals for photovoltaics applications. Journal of Materials Chemistry C, vol. 6,pp. 414–445.

[5] Avellaneda, D., Nair, M. T. S., and Nair, P. K. (2010). Cu2SnS3 and Cu4SnS4 thin films via chemical deposition for photovoltaic application. Journal of the Electrochemical Society, vol. 157, pp. D346–D352.

[6] Berg, D. M., Djemour, R., Gütay, L., et al. (2012). The film solar cells based on the ternary compound Cu2SnS3.Thin Solid Films, vol. 520, pp. 6291–6294.

[7] Nakashima, M., Fujimoto, J., Yamaguchi, T., et al. (2015). Cu2SnS3 thin film solar cells fabricated by sulfurization from NaF/Cu/Sn stacked precursor. Applied Physics Express, vol. 8, p. 42303.

[8] Braunger, D., Hariskos, D., Walter, T., et al. (1996). Sequential processes for the deposition of polycystalline Cu(In,Ga)(S,Se)2 thin films: Growth mechanism and devices. Solar Energy Materials and Solar Cells, vol. 40, pp. 97–102.

[9] Wang, W., Winkler, M. T., Gunawan, O., et al. (2014). Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Advanced Energy Materials, vol. 4, p. 1301465.

[10] Chen, Q., Dou, X., Ni, Y., et al. (2012). Study and enhance the photovoltaic properties of narrow-bangap Cu2SnS3 solar cell by p-n junction interface modification. Journal of Colloid and Interface Science, vol. 376, pp. 327–330.

[11] Nakashima, M., Fujimoto, J., Yamaguchi, T., et al. (2017). KF addition to Cu2SnS3
thin films prepared by sulfurization process. Japanese Journal of Applied Physics, vol. 56, pp. 2C–4C.

[12] Ruan, C., Tao, J., Zhu, C., et al. (2018). Effect of potassium doping for ultrasonic
sprayed Cu2SnS3 thin films for solar cell application. Journal of Materials Science: Materials in Electronics. Retrieved from https://doi.org/10.1007/s10854-018-9401-9

[13] Amlouk, M., Dachraoui, M., Belgacem, S., et al. (1987). Structural, optical and electrical properties of SnO2
:F and CdS airless sprayed layers. Solar Energy Materials and Solar Cells, vol. 15, pp. 453–461.

[14] Tauc, J. and Abeles, F. (1970). Optical Properties of Solids. Amsterdam: IOP Publishing Ltd.

[15] Mulder, B. J. (1973). Optical properties of an unusual form of thin chalcosite (Cu2S) crystals. Physica Status Solidi A, vol. 15, pp. 409–413.

[16] Ramya, M. and Ganesan, S. (2013). Influence of thickness and temperature on the properties of Cu2S thin films. Iranian Journal of Science and Technology, vol. 37A3, pp.293–300.

[17] Acharya, S. and Srivastava, O. N. (1981). Electronic behaviour of SnS2 crystals. Physica Status Solidi A, vol. 65, pp. 717–723.

[18] Zhu, X., Luo, X., Yuan, H., et al. (2018). Band gap engineering of SnS2 nanosheets by anion-anion codoping for visible-light photocatalysis. RSC Advances, vol. 8, pp.3304–3311.