Influence of Technological Parameters on Magnetic Properties of Co-Rich Amorphous Ferromagnetic Microwires

Abstract

The series of amorphous ferromagnetic glass-coated microwires of composition Co69Fe4Cr4Si12B11, manufactured by Taylor-Ulitovsky technique, was investigated. The series consisted of six types microwires fabricated under different technological conditions. The metallic nucleus and glass coating diameters of microwires ranged within 11-20 μm and 26-35 μm, respectively. Investigation of the magnetic properties
of microwires was carried out using induction and the small-angle magnetization rotation techniques. The anisotropy field, the magnetostriction constant and the average value of the quenching stresses are estimated for all types of microwires. Based on the experimental data obtained, influence of technological parameters on
the microwire’s magnetic properties was investigated.


Keywords: Amorphous ferromagnetic microwire, cobalt alloy, magnetic measurements, magnetostriction, internal stresses

References
[1] M.-H. Phan, H.-X. Peng, Giant magnetoimpedance materials: Fundamentals and applications, Prog. Mater. Sci. 53 (2008) 323–420. doi:10.1016/j.pmatsci.2007.05.003.


[2] V. Zhukova, M. Ipatov, A. Talaat, J.M. Blanco, A. Zhukov, Amorphous and nanocrystalline glass-coated wires: optimization of soft magnetic properties, Springer Series in Material Science, Ed. A. Zhukov, 252 (2017) 1-31. doi:10.1007/978-3-319-49707- 5_1.


[3] V.S. Larin, A.V. Torcunov, A.P. Zhukov, J. Gonzalez, M. Vazquez, L.V. Panina, Preparation and properties of glass-coated microwires. J. Magn. Magn. Mater. 249(1-2), 39–45 (2002)


[4] L.V. Panina, K. Mohri, Magneto-impedance effect in amorphous wires, Appl. Phys. Lett. 65 (1994) 1189-1191.


[5] V. Zhukova, A. Chizhik, A. Zhukov, A. Torcunov, V. Larin, J. Gonzalez, Optimization of Giant Magnetoimpedance in Co-Rich Amorphous Microwires, IEEE trans. on magn. 38 (2002) 3090–3092. doi:10.1109/TMAG.2002.802397.


[6] N.A. Usov, S.A. Gudoshnikov, Giant magnetoimpedance effect in amorphous ferromagnetic microwires with a weak helical anisotropy, Springer Series in Material Science, Ed. A. Zhukov, 252 (2017) 91-109. doi:10.1007/978-3-319-49707- 5_4.


[7] Y. Honkura, Development of amorphous wire type MI sensors for automobile use, J. Magn. Magn. Mater. 249 (2002) 375-381.


[8] S. Gudoshnikov, N. Usov, A. Nozdrin, M. Ipatov, A. Zhukov, V. Zhukova, Highly sensitive magnetometer based on the off-diagonal GMI effect in Co-rich glasscoated microwire. Phys. Status Solidi A. 211, 980–985 (2014)


[9] K. Mohri, T. Uchiyama, L.P. Shen, C.M. Cai, L.V. Panina, Amorphous wire and CMOS IC-based sensitive micro-magnetic sensors (MI sensor and SI sensor) for intelligent measurements and controls, J. Magn. Magn. Mater. 249 (2002) 351-356.


[10] M. Churyukanova, V. Semenkova, S. Kaloshkin, E. Shuvaeva, S. Gudoshnikov, V. Zhukova, I. Shchetinin, A. Zhukov, Magnetostriction investigation of soft magnetic microwires, Phys. Status Solidi Appl. Mater. Sci. 213 (2016) 363–367. doi:10.1002/pssa.201532552.


[11] A. Zhukov, A. Talaat, J.M. Blanco, M. Ipatov, V. Zhukova, Tuning of magnetic properties and GMI effect of Co-based amorphous microwires by annealing. J. Electron. Mater. 43(12), 4532–4539 (2014) doi:10.1007/s11664-014-3348-2


[12] S. Gudoshnikov, M. Churyukanova, S. Kaloshkin, A. Zhukov, V. Zhukova, N. Usov, Investigation of the properties of Co-rich amorphous ferromagnetic microwires by means of small angle magnetization rotation method, J. Magn. Magn. Mater. 387, 2015, 53-57.


[13] J.Vela´zquez, M. Vazquez, A. Zhukov, Magnetoelastic anisotropy distribution in glasscoated microwires. J. Mater. Res. 11, 2499–2505 (1996).


[14] A. Zhukov, M. Ipatov, M. Churyukanova, S. Kaloshkin, V. Zhukova, Giant magnetoimpedance in thin amorphous wires: from manipulation of magnetic field dependence to industrial applications. J. Alloys Compd. 586 (Suppl. 1), S279–S286 (2014).