Structure and Phase Composition of Zirconium Fuel Claddings in Initial State and after Creep Tests

Abstract








The article's abstract is no available.







References
[1] Romanato L.S. Advantages of Dry Hardened Cask Storage Over Wet Storage for Spent Nuclear Fuel // 2011 Int. Nucl. Atl. Conf. - Ina. 2011 Belo Horizonte,MG, Brazil, Oct. 24-28, 2011 Assoc. Bras. Energ. Nucl. - ABEN. 2011.


[2] Desgranges L. et al. Behavior of a defective nuclear fuel rod in dry storage conditions studied with a new experimental setup // Nucl. Technol. 2008. Vol. 163, № 2. P. 252–260.


[3] INTERNATIONAL ATOMIC ENERGY AGENCY. WWER-440 Fuel Rod Experiments Under Simulated Dry Storage Conditions. Vienna: INTERNATIONAL ATOMIC ENERGY AGENCY, 2004.


[4] Kobilyanskyi G.P. et al. Radiation damage of alloy E635 in structural elements of FA of WWER-1000 // VANT. 2009. Vol. 5. P. 57–68.


[5] Markelov V.A. On correlation of composition, structural-phase state, and properties of E635 zirconium alloy // Inorg. Mater. Appl. Res. 2010. Vol. 1, № 3. P. 245–253.


[6] Doriot S. et al. Transmission electron microscopy study of second phase particles irradiated by 2 MeV protons at 350 ∘C in Zr alloys // J. Nucl. Mater. Elsevier B.V, 2017. Vol. 494. P. 398–410.


[7] Bair J., Asle Zaeem M., Tonks M. A review on hydride precipitation in zirconium alloys // J. Nucl. Mater. Elsevier B.V., 2015. Vol. 466. P. 12–20.


[8] Kim H.G. et al. Corrosion and microstructural characteristics of Zr-Nb alloys with different Nb contents // J. Nucl. Mater. 2008. Vol. 373, № 1–3. P. 429–432.


[9] T.P. Chernyayeva, V.M. Grytsyna. Characteristics of HCP metals determining their behavior under mechanical, thermal and radiation exposure // Problems of atomic science and technology. Series Physics of Radiation Damage and Radiation Material Science. 2008. Vol. 2. P. 15–27.


[10] Williams D.B., Carter C.B. Transmission Electron Microscopy: A Textbook for Materials Science. Springer, 2009.


[11] Frolov A.S. et al. Development of the DIFFRACALC software for analyzing the phase composition of alloys // Crystallogr. Reports. 2017. Vol. 62, № 5.


[12] GOST 5639-82, Steel and alloys. Methods for detection and determination of grain size.


[13] Kobylanski G.P., Shamardin V.K., Ostrovsky Z.E. et. al. Radiation shaping of shell and channel tubes from zirconium alloys at high neutron fluences // Radiation Material Science: Proceedings of the International Conference on Radiation Material Science


[14] Prasolov P.F., Shestak V.E., Platonov P.A. et. al. Anisotropy of the elasticity modulus and the coefficient of thermal expansion of textured zirconium alloys H-1 and H-2,5 // Atomic energy. 1990. V.68. I.2. P.98-101.


[15] Monnet G., Devincre B., Kubin L.P. Dislocation study of prismatic slip systems and their interactions in hexagonal close packed metals: Application to zirconium // Acta Mater. 2004. Vol. 52, № 14. P. 4317–4328.


[16] Search H. et al. Non-equilibrium solid phases formed by ion mixing in the Zr-Nb system with positive heat of formation // Mater. Sci. 1994. Vol. 39. P. 1–5.


[17] Petelguzov I.A. The influence of annealing after quenching E110 and E125 alloys on their corrosion stability // Problems of atomic science and technology. 2003. Vol. 6, № 84. P. 55–60.


[18] Stukalov A.I. Structural-phase state of Zr-2.5%Nb alloy after microwave heat treatment // Problems of atomic science and technology. 2000. Vol. 78, № 6. P. 105–119.


[19] Neklyudov I.M. et al. Research of the fuel pipes microstructure, made of calciumthermal alloy Zr1Nb (KTC-110) // Problems of atomic science and technology.. 2002. № 82. P. 106–112.


[20] T.P. Chernyayeva. et al. The structure features of quenched alloys Zr-Nb // Problems of atomic science and technology. Physics of Radiation Damage and Radiation Material Science 2011. Vol. 2, № (97). P. 95–107.