Co-application of Difenoconazole with Thymol Results in Suppression of a Parastagonospora Nodorum Mutant Strain Resistant to this Triazole

Abstract

Results of in vitro study of thymol, a natural chemosensitizer, as a potential agent for overcoming of difenoconazole resistance of Parastagonospora nodorum causing glume and leaf blotch of wheat are first reported. The level of difenoconazole resistance of a natural mutant PNm1 strain with low sensitivity to the Dividend fungicide (a.i. difenoconazole) was determined by the cultivation of this isolate on potato dextrose agar in the presence of the fungicide at sub-lethal and lethal (in relation to the initial fungicide-sensitive strain) concentrations. A principal possibility of the thymol use to overcome resistance of P. nodorum to DMI (demethylation inhibitors) fungicides is shown. Co-application of this compound with Dividend SC, 3 % resulted in a significant reduction of resistance of the mutant strain and enhancement of its sensitivity to difenoconazole up to the level corresponding to the initial non-resistant isolate.

References
[1] Brent, K.Y., Hollomon, D.W. (2007). Fungicide Resistance in Crop Pathogens: How can it be Managed? 2rd ed. Brussels: CropLife International. Retrieved from: http: //www.frac.info/publication/anhang/FRAC_ Mono1_2007_100dpi.pdf

[2] Campbell, B., Chan, K., Kim, J.H. (2012). Chemosensitization as a means to augment commercial antifungal agents. Front. Microbiol., vol. 3, article ID 79. DOI: 10.3389/fmicb.2012.00079.

[3] Kim, J.H., Mahoney, N., Chan, K.L., Molyneux, R.J., May, G.S., Campbell, B.C. (2008). Chemosensitization of fungal pathogens to antimicrobial agents using benzo analogs. FEMS Microbiol. Lett., vol. 281, pp. 64–72. DOI: 10.1111/j.1574- 6968.2008.01072.x.

[4] Faria, N.C.G, Kim, J.H., Gonçalves, L.A.P., Martins, M.L., Chan, K.L., Campbell, B.C. (2011). Enhanced activity of antifungal drugs using natural phenolics against yeast strains of Candida and Cryptococcus. Lett. Appl. Microbiol., vol. 52, pp. 506–513. DOI: 10.1111/j.1472-765X.2011.03032.x.

[5] Kim, J.H., Mahoney, N., Chan, K.L., Campbell, B.C. (2011). Antifungal activity of redox-active benzaldehydes that target cellular antioxidation. Ann. Clin. Microbiol. Antimicrob., vol. 10, article ID 23. DOI: 10.1186/1476-0711-10-23.

[6] Dzhavakhiya, V.G., Shcherbakova, L.A., Semina, Y.V., Zhemchuzhina, N.S., Campbell, B. (2012). Chemosensitization of plant pathogenic fungi to agricultural fungicides. Front. Microbiol., vol. 3, article ID 87. DOI: 10.3389/fmicb.2012.00087.

[7] Toropova, E.Yu., Kazakova, O.A., Selyuk, M.P. (2016). Monitoring of septoria blight on spring wheat in the forest-steppe of Western Siberia. Achiev. Sci. Technol. AIC, vol. 30, no. 12, pp. 33–35.

[8] Murray, G.M., Brennan, J.P. (2009). Estimating disease losses to the Australian wheat industry. Australas. Plant Pathol., vol. 38, pp. 558–570. DOI: 10.1071/AP09053.

[9] Kolomiets, T.M., Pankratova, L.F., Pakholkova, E.V. (2017). Wheat (Triticum L.) cultivars from grin collection (USA) selected for durable resistance to Septoria tritici and Stagonospora nodorum blotch. Agr. Biol., vol. 52, no. 3, pp. 561–569, DOI: 10.15389/agrobiology.2017.3.561eng.

[10] Downie, R.C., Bouvet, L., Furuki, E. et al. (2018). Assessing European wheat sensitivities to Parastagonospora nodorum necrotrophic effectors and fine-mapping the Snn3-B1 locus conferring sensitivity to the effector SnTox3. Front. Plant Sci., vol. 9, article ID 881. DOI: 10.3389/fpls.2018.00881.

[11] Buzuk, A.G., Yurchenko, R.A., Buzuk, G.N. (2012). Variation of chemical composition of essential oil Thymus pulegioides L. Vestnik farmatsii, no. 1(55), pp. 19–25.

[12] Zuzarte, M., Goncalves, M.J., Cavaleiro, C et al. (2011). Chemical composition and antifungal activity of the essential oils of Lavandula viridis L'Her. J. Med. Microbiol., vol. 60, pp. 612–618. DOI: 10.1099/jmm.0.027748-0.

[13] Pakholkova, E.V., Salnikova, N.N., Kurkova, N.A., Kolomiets, T.M., Kiseleva, M.I. (2017). Pathogenic strains storage of the main causative agents of cereal crops septoriosis (leaf spot) in the State Collection of Phytopathogenic Microorganisms in All-Russian Research Institute of Phytopathology. Int. J. Pharm. Res. Allied Sci., vol. 6, pp. 120–130.

[14] Douaiher, M.N., Halama, P., Janex-Favre, M.C. (2004). The ontogeny of Stagonospora nodorum pycnidia in culture. Sydowia, vol. 56, pp. 39–50.

[15] Dzhavakhiya, V.G., Voinova, T.M., Statsyuk, N.V., Shcherbakova, L.A. (2019). Sensitization of plant pathogenic fungi to the tebuconazole-based commercial fungicide using some analogues of natural amino acids. AIP Conference Proceedings ``Modern synthetic methodologies for creating drugs and functional materials'', vol. 2063, article ID 030005. November 2018. DOI 10.1063/1.5087313.

[16] Yang, C., Hamel, C., Vujanovic, V., Gan, Y. (2011). Fungicide: modes of action and possible impact on nontarget microorganisms. ISRN Ecology, vol. 2011, article ID 130289. DOI: 10.5402/2011/130289.

[17] Ziogas N.B., Malandrakis, A.A. (2015). Sterol biosynthesis inhibitors: C14 demethylation (DMIs). In: Ishii H., Hollomon D., ed. Fungicide Resistance in Plant Pathogens. Tokyo: Springer, pp. 199–216.

[18] Snelders, E., Camps, S.M., Karawajczyk, A. et al. (2012). Triazole fungicides can induce cross-resistance to medical triazoles in Aspergillus fumigatus. PloS one, vol. 7, article ID e31801. DOI: 10.1371/journal.pone.0031801.

[19] Magill, S.S., Shields, C., Sears, C.L., Choti, M., Merz, W.G. (2006). Triazole cross resistance among Candida spp.: case report, occurrence among bloodstream isolates, and implications for antifungal therapy. J. Clin. Microbiol., vol. 44, pp. 529–535. DOI: 10.1128/JCM.44.2.529-535.2006.

[20] Mavroeidi V.I., Shaw, M.W. (2005). Sensitivity distributions and cross-resistance patterns of Mycosphaerella graminicola to fluquinconazole, prochloraz and azoxystrobin over a period of 9 years. Crop Prot., vol. 24, pp. 259–266. DOI: 10.1016/j.cropro.2004.07.014.

[21] Oliver, R.P., Friesen, T.L., Faris, J.D., Solomon, P.S. (2012). Stagonospora nodorum: from pathology to genomics and host resistance. Annu. Rev. Phytopathol., vol. 50, pp. 23–43. DOI: 10.1146/annurev-phyto-081211-173019.

[22] Blixt, E., Djurle, A., Yuen, J., Olson, A. (2009). Fungicide sensitivity in Swedish isolates of Phaeosphaeria nodorum. Plant Pathol., vol. 58, pp. 655–664. DOI: 10.1111/j.1365- 3059.2009.02041.x.